Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators

被引:0
|
作者
Kook, Yunbum [1 ]
Lee, Yin Tat [2 ,3 ]
Shen, Ruoqi [2 ]
Vempala, Santosh [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Washington, Seattle, WA USA
[3] Microsoft Res, Redmond, WA USA
关键词
Sampling; Markov Chain Monte Carlo; Riemannian Hamiltonian Monte Carlo; RANDOM-WALKS; CONVEX; ALGORITHM; GEOMETRY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the convergence rate of discretized Riemannian Hamiltonian Monte Carlo on sampling from distributions in the form of e(-f(x)) on a convex body M subset of R-n. We show that for distributions in the form of e(-alpha inverted perpendicular) (x) on a polytope with m constraints, the convergence rate of a family of commonly-used integrators is independent of ||alpha||(2) and the geometry of the polytope. In particular, the implicit midpoint method (IMM) and the generalized Leapfrog method (LM) have a mixing time of (O) over tilde (mn(3)) to achieve epsilon total variation distance to the target distribution. These guarantees are based on a general bound on the convergence rate for densities of the form e(-f(x)) in terms of parameters of the manifold and the integrator. Our theoretical guarantee complements the empirical results of Kook et al. (2022), which shows that RHMC with IMM can sample ill-conditioned, non-smooth and constrained distributions in very high dimension efficiently in practice.
引用
收藏
页数:66
相关论文
共 50 条
  • [1] Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation
    Lee, Yin Tat
    Vempala, Santosh S.
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 1115 - 1121
  • [2] Geometric integrators and the Hamiltonian Monte Carlo method
    Bou-Rabee, Nawaf
    Sanz-Serna, J. M.
    ACTA NUMERICA, 2018, 27 : 113 - 206
  • [3] On the application of improved symplectic integrators in Hamiltonian Monte Carlo
    Mannseth, Janne
    Kleppe, Tore S.
    Skaug, Hans J.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (02) : 500 - 509
  • [4] On Lq convergence of the Hamiltonian Monte Carlo
    Ghosh, Soumyadip
    Lu, Yingdong
    Nowicki, Tomasz
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 161 - 169
  • [5] COUPLING AND CONVERGENCE FOR HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Eberle, Andreas
    Zimmer, Raphael
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (03): : 1209 - 1250
  • [6] Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions
    Chen, Zongchen
    Vempala, Santosh S.
    THEORY OF COMPUTING, 2022, 18 : 1 - 18
  • [7] NUMERICAL INTEGRATORS FOR THE HYBRID MONTE CARLO METHOD
    Blanes, Sergio
    Casas, Fernando
    Sanz-Serna, J. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A1556 - A1580
  • [8] Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions 2: Numerical integrators
    Mangoubi, Oren
    Smith, Aaron
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 586 - 595
  • [9] Randomized time Riemannian Manifold Hamiltonian Monte Carlo
    Peter A. Whalley
    Daniel Paulin
    Benedict Leimkuhler
    Statistics and Computing, 2024, 34
  • [10] Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
    Kook, Yunbum
    Lee, Yin Tat
    Shen, Ruoqi
    Vempala, Santosh S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,