Zero-Hopf bifurcation of limit cycles in certain differential systems

被引:0
|
作者
Huang, Bo [1 ]
Wang, Dongming [2 ,3 ]
机构
[1] Beihang Univ, Sch Math Sci, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Artificial Intelligence, LMIB, Beijing 100191, Peoples R China
[3] Sorbonne Univ, LIP6, CNRS, 4 Pl Jussieu, F-75005 Paris, France
来源
基金
中国国家自然科学基金;
关键词
Averaging method; Limit cycle; Mixed volume; Symbolic computation; Zero-Hopf bifurcation; AVERAGING THEORY; NORMAL FORMS; COMPUTATION; ORDER;
D O I
10.1016/j.bulsci.2024.103472
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension n, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order m. Denote by Hk(n,m) the maximum number of limit cycles of the system that can be detected by using the averaging method of order k. We prove that H1(n,m)<=(m(-1))& sdot;mn(-2) and Hk(n,m)<=(km)(n-1) for generic n >= 3, m >= 2 and k>1. The exact numbers of Hk(n,m) or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations, a four-dimensional hyperchaotic differential system and a model of nuclear spin generator
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Zero-Hopf Bifurcation
    Liebscher, Stefan
    BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 103 - 108
  • [2] Zero-Hopf Bifurcation in a Generalized Genesio Differential Equation
    Diab, Zouhair
    Guirao, Juan L. G.
    Vera, Juan A.
    MATHEMATICS, 2021, 9 (04) : 1 - 11
  • [3] On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system
    Jaume Llibre
    Regilene D. S. Oliveira
    Claudia Valls
    Nonlinear Dynamics, 2015, 80 : 353 - 361
  • [4] Zero-Hopf bifurcation in a Chua system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 31 - 40
  • [5] Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua's system
    Li, Junze
    Liu, Yebei
    Wei, Zhouchao
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [6] LIMIT CYCLES BIFURCATING FROM A NON-ISOLATED ZERO-HOPF EQUILIBRIUM OF THREE-DIMENSIONAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Xiao, Dongmei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2047 - 2062
  • [7] Limit cycles bifurcating from a zero-Hopf singularity in arbitrary dimension
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    NONLINEAR DYNAMICS, 2018, 92 (03) : 1159 - 1166
  • [8] Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System
    Husien, Ahmad Muhamad
    Amen, Azad Ibrahim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (08):
  • [9] Limit cycles bifurcating from a zero-Hopf equilibrium of a 3-dimensional continuous differential system
    Sara Kassa
    Jaume Llibre
    Amar Makhlouf
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 419 - 426
  • [10] ZERO-HOPF BIFURCATION FOR A CLASS OF LORENZ-TYPE SYSTEMS
    Llibre, Jaume
    Perez-Chavela, Ernesto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (06): : 1731 - 1736