Reliability analysis of mooring chains for floating offshore wind turbines

被引:1
|
作者
Li, Guangming [1 ]
Pan, Tianguo [1 ]
Feng, Ruming [1 ]
Zhu, Liyun [1 ]
机构
[1] Red Bay Lab, Shanwei, Peoples R China
关键词
reliability analysis; Monte Carlo simulation; offshore mooring chain; first order; reliability method; RESPONSE-SURFACE APPROACH; DYNAMICS; SYSTEM;
D O I
10.3389/fbuil.2024.1463682
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As offshore wind farms move into deeper waters, around 80 m, the high costs necessitate replacing bottom-fixed turbines with floating offshore wind turbines, which require mooring systems to maintain stability within design limits. Data from previous projects in China indicate that mooring systems can constitute about 20% of the total investment. Thus, reducing mooring system costs can significantly benefit the development of next-generation floating wind farms. This paper discusses the reliability analysis of mooring chains for floating wind turbines to optimize inspection plans and strategies, thereby saving on maintenance costs over their design lifetime. A case study on S-N curve based fatigue reliability analysis is conducted using both Monte Carlo Simulation and First Order Reliability Method (FORM), with consistent results from both methods. Additionally, three sensitivity analysis cases identify key parameters for the fatigue reliability analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dynamic Analysis of Mooring Cables with Application to Floating Offshore Wind Turbines
    Petrone, Crescenzo
    Oliveto, Nicholas D.
    Sivaselvan, Mettupalayam V.
    JOURNAL OF ENGINEERING MECHANICS, 2016, 142 (03)
  • [2] Optimization of Mooring Systems for Floating Offshore Wind Turbines
    Benassai, Guido
    Campanile, Antonio
    Piscopo, Vincenzo
    Scamardella, Antonio
    COASTAL ENGINEERING JOURNAL, 2015, 57 (04)
  • [3] DEMONSTRATION OF THE INTELLIGENT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINES
    Harrold, Magnus J.
    Thies, Philipp R.
    Halswell, Peter
    Johanning, Lars
    Newsam, David
    Ferreira, Claudio Bittencourt
    PROCEEDINGS OF THE ASME 2ND INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, 2019, 2020,
  • [4] FIBRE SPRING MOORING SOLUTION FOR MOORING FLOATING OFFSHORE WIND TURBINES IN SHALLOW WATER
    McEvoy, Paul
    Kim, Seojin
    Haynes, Malak
    PROCEEDINGS OF ASME 2021 40TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING (OMAE2021), VOL 9, 2021,
  • [5] Sensitivity Analysis of Mooring Chain Fatigue of Floating Offshore Wind Turbines in Shallow Water
    Chen, Jiahao
    Yin, Ziwei
    Zheng, Can
    Li, Yan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [6] Coupled analysis of floating offshore wind turbines with new mooring systems by CFD method
    Haider, Rizwan
    Shi, Wei
    Lin, Zaibin
    Cai, Yefeng
    Zhao, Haisheng
    Li, Xin
    OCEAN ENGINEERING, 2024, 312
  • [7] Digital Twin of the Mooring Line Tension for Floating Offshore Wind Turbines
    Walker, Jake
    Coraddu, Andrea
    Oneto, Luca
    Kilbourn, Stuart
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [8] Nonlinear modelling of shared mooring concepts for floating offshore wind turbines
    Pan, Qi
    Guo, Feng
    Luedecke, Fiona D.
    EERA DEEPWIND CONFERENCE 2023, 2023, 2626
  • [9] Modelling of Synthetic Fibre Rope Mooring for Floating Offshore Wind Turbines
    Sorum, Stian H.
    Fonseca, Nuno
    Kent, Michael
    Faria, Rui Pedro
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (01)
  • [10] Mooring Failure Analysis of Semisubmersible Floating Offshore Wind Turbines Considering Mooring Redundancy at Each Azimuth Angle
    Hao, Shuai
    Zhang, Xuning
    Yu, Yang
    Wang, Bin
    Bo, Xingdao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (02)