On a lower bound of Hausdorff dimension of weighted singular vectors

被引:0
|
作者
Kim, Taehyeong [1 ]
Park, Jaemin [2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
[2] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1112/mtk.12252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let.. = (..1,.,....) be a..-tuple of positive real numbers such that S...... = 1 and.. 1........ A..dimensional vector.. = (..1,.,....). R.. is said to be..- singular if for every.. > 0, there exists.. 0 > 1such that for all.. >.. 0, the system of inequalities max 1...... |...... -.... | 1.... <.... and 0 <.. <.. has an integer solution (..,..) = (..1,.,....,..). Z.. x Z. We prove that the Hausdorff dimension of the set of..singular vectors in R.. is bounded below by.. - 1 1+.. 1. Our result partially extends the previous result of Liao et al. [Hausdorff dimension of weighted singular vectors in R2, J. Eur. Math. Soc. 22 (2020), 833-875].
引用
收藏
页数:31
相关论文
共 50 条