shaPRS: Leveraging shared genetic effects across traits or ancestries improves accuracy of polygenic scores

被引:2
|
作者
Kelemen, Martin [1 ,2 ]
Vigorito, Elena [3 ]
Fachal, Laura [1 ]
Anderson, Carl A. [1 ]
Wallace, Chris
机构
[1] Wellcome Sanger Inst, Hinxton, Cambs, England
[2] Univ Cambridge, Cambridge Inst Therapeut Immunol & Infect Dis, Cambridge, England
[3] Univ Cambridge, MRC Biostat Unit, Cambridge, England
基金
英国惠康基金;
关键词
GENOME-WIDE ASSOCIATION; INFLAMMATORY-BOWEL-DISEASE; RISK PREDICTION; LOCI; ARCHITECTURE; DIVERSITY; DISCOVERY; INSIGHTS; GWAS;
D O I
10.1016/j.ajhg.2024.04.009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We present shaPRS, a method that leverages widespread pleiotropy between traits or shared genetic effects across ancestries, to improve the accuracy of polygenic scores. The method uses genome-wide summary statistics from two diseases or ancestries to improve the genetic effect estimate and standard error at SNPs where there is homogeneity of effect between the two datasets. When there is significant evidence of heterogeneity, the genetic effect from the disease or population closest to the target population is maintained. We show via simulation and a series of real -world examples that shaPRS substantially enhances the accuracy of polygenic risk scores (PRSs) for complex diseases and greatly improves PRS performance across ancestries. shaPRS is a PRS pre-processing method that is agnostic to the actual PRS generation method, and as a result, it can be integrated into existing PRS generation pipelines and continue to be applied as more performant PRS methods are developed over time.
引用
收藏
页码:1006 / 1017
页数:13
相关论文
共 50 条
  • [1] Leveraging multiple ancestries and traits improves fine-mapping accuracy
    Zhou, Feng
    Soremekun, Opeyemi
    Chikowore, Tinashe
    Fatumo, Segun
    Barroso, Ines
    Morris, Andrew
    Asimit, Jennifer
    HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 6 - 6
  • [2] BridgePRS leverages shared genetic effects across ancestries to increase polygenic risk score portability
    Hoggart, Clive J.
    Choi, Shing Wan
    Garcia-Gonzalez, Judit
    Souaiaia, Tade
    Preuss, Michael
    O'Reilly, Paul F.
    NATURE GENETICS, 2024, 56 (01) : 180 - 186
  • [3] BridgePRS leverages shared genetic effects across ancestries to increase polygenic risk score portability
    Clive J. Hoggart
    Shing Wan Choi
    Judit García-González
    Tade Souaiaia
    Michael Preuss
    Paul F. O’Reilly
    Nature Genetics, 2024, 56 : 180 - 186
  • [4] Deep Generative Models to improve Polygenic Risk Scores' accuracy and portability across ancestries and admixtures
    Lampis, Andrea
    Massi, Michela Carlotta
    Vergani, Andrea Mario
    Matteucci, Matteo
    Ieva, Francesca
    Di Angelantonio, Emanuele
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 1662 - 1662
  • [5] Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries
    Yanyu Liang
    Milton Pividori
    Ani Manichaikul
    Abraham A. Palmer
    Nancy J. Cox
    Heather E. Wheeler
    Hae Kyung Im
    Genome Biology, 23
  • [6] Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries
    Liang, Yanyu
    Pividori, Milton
    Manichaikul, Ani
    Palmer, Abraham A.
    Cox, Nancy J.
    Wheeler, Heather E.
    Im, Hae Kyung
    GENOME BIOLOGY, 2022, 23 (01)
  • [7] Predictive performance of polygenic scores for coronary artery disease in multiple genetic ancestries
    Regazzi, L.
    Bolli, A.
    Cadeddu, C.
    Boccia, S.
    Busby, G.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2023, 33
  • [8] Using Local Genetic Correlation Improves Polygenic Score Prediction Across Traits
    Pain, Oliver
    Lewis, Cathryn M.
    HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 29 - 30
  • [9] LEVERAGING FUNCTIONAL GENOMIC ANNOTATIONS AND GENOME COVERAGE TO IMPROVE POLYGENIC PREDICTION OF COMPLEX TRAITS WITHIN AND BETWEEN ANCESTRIES
    Zeng, Jian
    Zheng, Zhili
    Liu, Shouye
    Sidorenko, Julia
    Yengo, Loic
    Turley, Patrick
    Ani, Alireza
    Wang, Rujia
    Nolte, Ilja
    Snieder, Harold
    Yang, Jian
    Wray, Naomi
    Goddard, Michael
    Visscher, Peter
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2023, 75 : S29 - S30
  • [10] Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries
    Garcia-Marin, Luis M.
    Campos, Adrian I.
    Diaz-Torres, Santiago
    Rabinowitz, Jill A.
    Ceja, Zuriel
    Mitchell, Brittany L.
    Grasby, Katrina L.
    Thorp, Jackson G.
    Agartz, Ingrid
    Alhusaini, Saud
    Ames, David
    Amouyel, Philippe
    Andreassen, Ole A.
    Arfanakis, Konstantinos
    Arias-Vasquez, Alejandro
    Armstrong, Nicola J.
    Athanasiu, Lavinia
    Bastin, Mark E.
    Beiser, Alexa S.
    Bennett, David A.
    Bis, Joshua C.
    Boks, Marco P. M.
    Boomsma, Dorret I.
    Brodaty, Henry
    Brouwer, Rachel M.
    Buitelaar, Jan K.
    Burkhardt, Ralph
    Cahn, Wiepke
    Calhoun, Vince D.
    Carmichael, Owen T.
    Chakravarty, Mallar
    Chen, Qiang
    Ching, Christopher R. K.
    Cichon, Sven
    Crespo-Facorro, Benedicto
    Crivello, Fabrice
    Dale, Anders M.
    Smith, George Davey
    de Geus, Eco J. C.
    De Jager, Philip L.
    de Zubicaray, Greig I.
    Debette, Stephanie
    DeCarli, Charles
    Depondt, Chantal
    Desrivieres, Sylvane
    Djurovic, Srdjan
    Ehrlich, Stefan
    Erk, Susanne
    Espeseth, Thomas
    Fernandez, Guillen
    NATURE GENETICS, 2024, 56 (11) : 2333 - +