Reconfigurable time-space photonic integrated convolutional accelerator

被引:0
|
作者
Jonuzi, Tigers [1 ,3 ]
Lupo, Alessandro [2 ]
Talandier, Lucas [3 ]
Goldmann, Mirko [3 ]
Fischer, Ingo [3 ]
Argyris, Apostolos [3 ]
Massar, Serge [2 ]
Soriano, Miguel C. [3 ]
Domenech Gomez, J. David [1 ]
机构
[1] VLC Photon SL, C Camino Vera S-N, Valencia 46022, Spain
[2] Univ Libre Bruxelles, Lab Informat Quant, Ave Roosevelt 50, B-1050 Brussels, Belgium
[3] Campus Univ Illes Balears, Inst Fis Interdisciplinar & Sistema Complejos, IFISC UIB CSIC, E-07122 Palma De Mallorca, Spain
来源
关键词
Integrated Photonics; Convolutional Neural Network; Hardware Accelerator;
D O I
10.1117/12.3002622
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNNs) are employed in a plethora of fields, including computer vision, natural language processing, and speech recognition. We present an integrated photonic accelerator for CNNs based on the temporal-spatial interleaving of signals. This architecture supports 1D kernels, and can be extende to 2D convolutional kernels, providing scalability for complex networks. A supervised on-chip learning algorithm is employed to guarantee a reliable setting of convolutional weights against fabrication tolerances, thermal cross-talks, and changes in operating conditions. Overall, by leveraging photonics technology, the proposed accelerator significantly reduces hardware complexity while enabling high-speed processing and parallelism.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Photonic neuromorphic accelerator for convolutional neural networks based on an integrated reconfigurable mesh
    Aris Tsirigotis
    George Sarantoglou
    Stavros Deligiannidis
    Erica Sánchez
    Ana Gutierrez
    Adonis Bogris
    Jose Capmany
    Charis Mesaritakis
    Communications Engineering, 4 (1):
  • [2] ConvLight: A Convolutional Accelerator with Memristor integrated Photonic Computing
    Dang, Dharanidhar
    Dass, Jyotikrishna
    Mahapatra, Rabi
    2017 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2017, : 114 - 123
  • [3] Time-space multiplexed photonic-electronic digital multiplier
    Zhang, Wenkai
    Wu, Bo
    Gu, Wentao
    Cheng, Junwei
    Zhou, Hailong
    Chen, Liao
    Dong, Wenchan
    Dong, Jianji
    Zhang, Xinliang
    PHOTONICS RESEARCH, 2024, 12 (03) : 499 - 504
  • [4] Time-space multiplexed photonic-electronic digital multiplier
    WENKAI ZHANG
    BO WU
    WENTAO GU
    JUNWEI CHENG
    HAILONG ZHOU
    LIAO CHEN
    WENCHAN DONG
    JIANJI DONG
    XINLIANG ZHANG
    Photonics Research, 2024, 12 (03) : 499 - 504
  • [5] RELATIVIZING TIME, SPACE, AND TIME-SPACE
    BOOK, RV
    WILSON, CB
    XU, MR
    SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 571 - 581
  • [6] Convolutional Neural Network Accelerator with Reconfigurable Dataflow
    Oh, Myungwoo
    Lee, Chaeeun
    Lee, Sanghun
    Seo, Youngho
    Kim, Sunwoo
    Wang, Jooho
    Park, Chester Sungchung
    2018 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2018, : 42 - 43
  • [7] Scaling Photonic Neural Networks: A Silicon Photonic GeMM Leveraging a Time-space Multiplexed Xbar
    Kovaios, Stefanos
    Roumpos, Ioannis
    Moralis-Pegios, Miltiadis
    Giamougiannis, George
    Berciano, Mathias
    Ferraro, Filippo
    Bode, Dieter
    Srinivasan, Srinivasan Ashwyn
    Pantouvaki, Marianna
    Pleros, Nikos
    Tsakyridis, Apostolos
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (22) : 7825 - 7833
  • [8] Temporal partitioning for image processing based on time-space complexity in reconfigurable architectures
    Brandao do Nascimento, Paulo S.
    Eusebio de Lima, Manoel
    2006 DESIGN AUTOMATION AND TEST IN EUROPE, VOLS 1-3, PROCEEDINGS, 2006, : 373 - +
  • [9] The time-space of craftsmanship
    Eriksson, Lars
    Seiler, Joakim
    Jarefjall, Patrik
    Almevik, Gunnar
    CRAFT RESEARCH, 2019, 10 (01) : 17 - 39
  • [10] Traffic Prediction using Time-Space Diagram: A Convolutional Neural Network Approach
    Hosseini, Mohammadreza Khajeh
    Talebpour, Alireza
    TRANSPORTATION RESEARCH RECORD, 2019, 2673 (07) : 425 - 435