Fault Classification and Location in Microgrid Using Artificial Neural Networks

被引:0
|
作者
Kumar, Dharm Dev [1 ]
Alam, Mahamad Nabab [1 ]
机构
[1] Natl Inst Technol Warangal, Elect Engn Dept, Warangal, Telangana, India
关键词
Distributed Generator; Fault Location; Microgrid; Artificial Neural Network;
D O I
10.1109/icSmartGrid61824.2024.10578124
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A microgrid is a compact, localized power system that independently generates, distributes, and regulates electricity, either standalone or in sync with the main grid. These microgrids are designed to ensure a dependable power supply to specific areas. Intelligent microgrids have been made possible through the use of advanced sensors and the most recent grid communication standards. Nonetheless, when utilized in microgrids, conventional protection methods do not yield dependable results. This article presents a technique that employs measurements of three-phase voltage, current, and angle during a fault as input data for a module that classifies and locates faults. This module, constructed using an artificial neural network (ANN) technique, is part of the central protection system. The effectiveness of the suggested approach is evaluated by taking into account actual grid situations with different fault locations and types. A 7-bus meshed AC Microgrid Test System, which includes two Distributed Generators (DGs) and two grid sources, is simulated in the Simulink platform. MATLAB-2021b's data analytic capabilities have been utilized for the development of ANN-based fault classification and location modules for microgrids.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 50 条
  • [1] Fault Classification and Location for Distribution Generation Using Artificial Neural Networks
    Hong, Foo Kheng
    Raymond, Wong Jee Keen
    Heong, Oon Kheng
    Kuan, Tze Mei
    2020 IEEE INTERNATIONAL CONFERENCE ON POWER AND ENERGY (PECON 2020), 2020, : 315 - 320
  • [2] Power System Fault Detection, Classification and Location using Artificial Neural Networks
    Karic, Almin
    Konjic, Tatjana
    Jahic, Admir
    ADVANCED TECHNOLOGIES, SYSTEMS, AND APPLICATIONS II, 2018, 28 : 89 - 101
  • [3] Fault detection and classification using artificial neural networks
    Heo, Seongmin
    Lee, Jay H.
    IFAC PAPERSONLINE, 2018, 51 (18): : 470 - 475
  • [4] Artificial Neural Network Based Fault Detection and Fault Location in the DC Microgrid
    Yang, Qingqing
    Li, Jianwei
    Le Blond, Simon
    Wang, Cheng
    PROCEEDINGS OF RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID (REM2016), 2016, 103 : 129 - 134
  • [5] Fault Classification with Convolutional Neural Networks for Microgrid Systems
    Pan, Prateem
    Mandal, Rajib Kumar
    Rahman Redoy Akanda, Mojibur
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2022, 2022
  • [6] Fault classification in power systems using artificial neural networks
    Chowdhury, BH
    Wang, KY
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 1996, 4 (02): : 101 - 112
  • [7] Preliminary Study of Fault Detection on an Islanded Microgrid Using Artificial Neural Networks
    Phafula, Itani
    Koch, Ellen De Mello
    Nixon, Ken
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 678 - 683
  • [8] Fault classification and location of power transmission lines using artificial neural network
    Hagh, M. Tarafdar
    Razi, K.
    Taghizadeh, H.
    2007 CONFERENCE PROCEEDINGS IPEC, VOLS 1-3, 2007, : 1109 - +
  • [9] Fault Detection and Classification Approaches in Transmission Lines Using Artificial Neural Networks
    Ben Hessine, Moez
    Jouini, Houda
    Chebbi, Souad
    2014 17TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (MELECON), 2014, : 515 - 519
  • [10] A Novel Fault Classification Method Using Wavelet Transform and Artificial Neural Networks
    Sosa Perez, Rafael
    Castaneda Oviedo, Angela
    Camarillo-Penaranda, Juan
    Ramos, Gustavo
    PROCEEDINGS OF 2016 17TH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER (ICHQP), 2016, : 448 - 453