A simplified Proof of the Hopf Conjecture

被引:0
|
作者
Sabatini, Luca [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Via A Scarpa 16, I-00100 Rome, Italy
关键词
Manifolds without conjugate points; barycentre map;
D O I
10.2478/auom-2024-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The use of the barycentre map between two copies of R-n, the first one with a metric without conjugate points, the second one with the canonical flat metric, allows to prove in a simplified way the fact that Riemannian tori without conjugate points are flat, as conjectured by Hopf in 1948 and proved definitively by Burago and Ivanov in 1994.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [1] A simplified proof of Serre's conjecture
    Dieulefait, Luis Victor
    Pacetti, Ariel Martin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [2] A simplified proof of Serre’s conjecture
    Luis Victor Dieulefait
    Ariel Martín Pacetti
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [3] Proof of Hopf's Conjecture on the Structure of Turbulence (in Memory of Tatarsky)
    Nosov, V. V.
    Lukin, V. P.
    Kovadlo, P. G.
    Nosov, E. V.
    Torgaev, A. V.
    ATMOSPHERIC AND OCEANIC OPTICS, 2023, 36 (04) : 300 - 305
  • [4] Proof of Hopf’s Conjecture on the Structure of Turbulence (in Memory of Tatarsky)
    V. V. Nosov
    V. P. Lukin
    P. G. Kovadlo
    E. V. Nosov
    A. V. Torgaev
    Atmospheric and Oceanic Optics, 2023, 36 : 300 - 305
  • [5] A simplified proof of the André-Oort conjecture for products of modular curves
    Christopher Daw
    Archiv der Mathematik, 2012, 98 : 433 - 440
  • [6] THE HOPF CONJECTURE AND THE SINGER CONJECTURE
    Davis, Michael W.
    ENSEIGNEMENT MATHEMATIQUE, 2008, 54 (1-2): : 80 - 82
  • [7] A simplified proof of the Andre-Oort conjecture for products of modular curves
    Daw, Christopher
    ARCHIV DER MATHEMATIK, 2012, 98 (05) : 433 - 440
  • [8] A simplified proof of a conjecture for the perturbed Gelfand equation from combustion theory
    Korman, Philip
    Li, Yi
    Ouyang, Tiancheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (05) : 2874 - 2885
  • [9] A proof of the Brown-Goodearl conjecture for module-finite weak Hopf algebras
    Rogalski, Daniel
    Won, Robert
    Zhang, James J.
    ALGEBRA & NUMBER THEORY, 2021, 15 (04) : 971 - 997
  • [10] On the Hopf conjecture with symmetry
    Kennard, Lee
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 563 - 593