Global existence of solutions for the drift-diffusion system with large initial data in (B) over dot∞,∞-2 (Rd)

被引:0
|
作者
Zhao, Jihong [1 ]
Jin, Rong [1 ]
Chen, Hao [1 ]
机构
[1] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Drift-diffusion system; Global existence; Large solutions; Besov spaces; LONG-TIME BEHAVIOR; WELL-POSEDNESS; CARRIER TRANSPORT; BASIC EQUATIONS; NERNST-PLANCK; BESOV; DECAY;
D O I
10.1016/j.nonrwa.2024.104145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem of the drift-diffusion system arising from semiconductor model. We prove that if a certain nonlinear function of the initial data is small enough, in a Besov type space, then there is a global solution to this drift-diffusion system. We also provide an example of initial data satisfying that nonlinear smallness condition, but whose norm be chosen arbitrarily large in (B) over dot(infinity,infinity)(-2)(R-d).
引用
收藏
页数:10
相关论文
共 50 条