Optimizing interfacial modification for enhanced performance of Na3V2(PO4)3 cathode in sodium-ion batteries

被引:6
|
作者
Pan, Mengwei [1 ]
Wang, Yuxuan [1 ]
Liu, Yang [1 ]
Zhang, Mengjie [1 ]
Liu, Xichang [3 ]
Yuan, Yanle [1 ]
Zhou, Yuchen [1 ]
Liu, Weifang [2 ]
Chen, Tao [1 ]
Liu, Kaiyu [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Peoples R China
[2] Hunan Univ Sci & Technol, Coll Chem & Chem Engn, Xiangtan 411201, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Na3V2(PO4)(3); Sodium-ion batteries; Interfacial modification; High capacity; Full cell; NANOPARTICLES; CAPACITANCE; COMPOSITES; GRAPHENE; NITROGEN; NASICON; STORAGE;
D O I
10.1016/j.cej.2024.153396
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel cathode material, Na3V2(PO4)(3)C@CNT (NVP/C@CNT), was designed and synthesized by a low-temperature solid-phase drying ball milling method. The nanoparticles are covered by an amorphous carbon layer, and simultaneously enveloped and embedded by carbon nanotubes on the surface. Consequently, a carbon network consisting of carbon nanotubes and amorphous carbon layers is formed in the material. Notably, no phase transition during the intercalation process of sodium ions, confirming the stable crystal structure, which ensures the stability and reversibility of the large-capacity cathode in the large-volume change. The addition of CNTs can regulate the size of NVP particles, increase the contact area between NVP and electrolyte, leading to an enhancement in the sodium ion diffusion coefficient. The NVP/C@CNT electrode exhibits a capacity of 114.5 mA h g(-1) at 0.1 C. After 2650 cycles, the discharge capacity retention rate is 98.2 % at 10 C. Even at 20 C, the discharge capacity is still 93.3 mA h g(-1) after 2710 cycles, with a retention rate of 99.5 %. This work provides a feasible approach for the design of low-cost, long-life, high-performance cathode materials for sodium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Na3V2(PO4)3: an advanced cathode for sodium-ion batteries
    Zhang, Xianghua
    Rui, Xianhong
    Chen, Dong
    Tan, Huiteng
    Yang, Dan
    Huang, Shaoming
    Yu, Yan
    NANOSCALE, 2019, 11 (06) : 2556 - 2576
  • [2] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Jafian, Samuel
    Hung, I-Ming
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (05) : 2582 - 2590
  • [3] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Samuel Jafian
    I-Ming Hung
    Journal of Electronic Materials, 2016, 45 : 2582 - 2590
  • [4] High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries
    Yang, Ze
    Li, Guolong
    Sun, Jingying
    Xie, Lixin
    Jiang, Yan
    Huang, Yunhui
    Chen, Shuo
    ENERGY STORAGE MATERIALS, 2020, 25 (25) : 724 - 730
  • [5] Optimization Strategies of Na3V2(PO4)3 Cathode Materials for Sodium-Ion Batteries
    Hu, Jiawen
    Li, Xinwei
    Liang, Qianqian
    Xu, Li
    Ding, Changsheng
    Liu, Yu
    Gao, Yanfeng
    NANO-MICRO LETTERS, 2025, 17 (01)
  • [6] Scalable production and performance optimization of Na3V2(PO4)3 cathode materials for sodium-ion batteries
    Gong, Xiaofei
    Thou, Pengfei
    Cui, Chenxu
    Tang, Ao
    Ben, Miao
    Shang, Chaoqun
    Zheng, Lei
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2025, 145 : 630 - 636
  • [7] A stable and superior performance of Na3V2(PO4)3/C nanocomposites as cathode for sodium-ion batteries
    Hu, Fangdong
    Jiang, Xiaolei
    INORGANIC CHEMISTRY COMMUNICATIONS, 2020, 115
  • [8] Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries
    Li, Bo
    Liu, Jing
    Xiu, Xia
    Yang, Guanglei
    Zhu, Kaixing
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (02)
  • [9] Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries
    Bo Li
    Jing Liu
    Xia Xiu
    Guanglei Yang
    Kaixing Zhu
    Bulletin of Materials Science, 46
  • [10] Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone
    Zhu, Weikai
    Liang, Kang
    Ren, Yurong
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17192 - 17201