Recent Development of Transition Metal-based Amorphous Electrocatalysts for Water Splitting

被引:0
|
作者
Lu, Bowen [1 ,2 ]
Gao, Haohao [1 ,2 ]
Hua, Zile [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, 1295 Dingxi Rd, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen energy; Water splitting; Transition metal; Amorphous materials; HYDROGEN EVOLUTION; NANOSHEETS;
D O I
10.1002/cctc.202400564
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical water splitting, including the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), is a promising hydrogen production technology. However, in practice, the high overpotentials and sluggish reaction kinetics associated with the anode OER process are the major obstacles to the smooth progress of electrocatalytic water splitting. Amorphous electrocatalysts, a crucial family of functional materials, exhibit unexpected performance due to their special short-range ordered and long-range disordered atom arrangement, abundant defect sites and adjustable composition. To date, while numerous recent publications showcase promising results for transition metal-based amorphous electrocatalysts, including amorphous metal phosphide and metal hydroxide electrocatalysts with remarkable HER and OER properties respectively, the utilization of single-function HER or OER catalysts tends to augment system complexity for water electrolysis, thereby escalating the cost of hydrogen production. In this regard, amorphous HER/OER bifunctional electrocatalysts are desired. In this review, we summarize the recent development on transition metal-based amorphous catalysts for electrochemical water splitting. The design strategies for constructing HER/OER bifunctional transition-metal-based amorphous electrocatalysts are highlighted here, also including the exploration of relationship between catalyst structures and their remarkably improved performance. Finally, the possibilities of amorphous bifunctional catalysts for practical industrial applications are evaluated and future research direction are suggested. This review summarizes and discusses recent progress in various design and synthesis strategies of transition metal-based amorphous materials, such as metal oxides/hydroxides, phosphides, and borides. Additionally, the relationship between catalyst microstructures and their enhanced performance were strengthened. Specifically, these innovative catalyst design strategies are summarized, including morphological control, defect engineering, heterostructure design and surface reconstruction. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Recent progress on transition metal-based amorphous ribbons as electrocatalysts for water splitting
    Li, Tianjing
    Sun, Hainan
    Dan, Zhenhua
    Zhou, Lian
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2025, 32 (04) : 757 - 777
  • [2] Recent progress on transition metal-based amorphous ribbons as electrocatalysts for water splitting
    Tianjing Li
    Hainan Sun
    Zhenhua Dan
    Lian Zhou
    International Journal of Minerals,Metallurgy and Materials, 2025, (04) : 757 - 777
  • [3] Transition metal-based electrocatalysts for overall water splitting
    Li, Xiao-Peng
    Huang, Can
    Han, Wen-Kai
    Ouyang, Ting
    Liu, Zhao-Qing
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2597 - 2616
  • [4] Transition metal-based electrocatalysts for overall water splitting
    Xiao-Peng Li
    Can Huang
    Wen-Kai Han
    Ting Ouyang
    Zhao-Qing Liu
    ChineseChemicalLetters, 2021, 32 (09) : 2597 - 2616
  • [5] Transition Metal-Based Chalcogenides as Electrocatalysts for Overall Water Splitting
    Majhi, Kartick Chandra
    Yadav, Mahendra
    ACS ENGINEERING AU, 2023, 3 (05): : 278 - 284
  • [6] Recent achievements in noble metal-based oxide electrocatalysts for water splitting
    Wang, Feng
    Xiao, Linfeng
    Jiang, Yuwei
    Liu, Xijun
    Zhao, Xue
    Kong, Qingquan
    Abdukayum, Abdukader
    Hu, Guangzhi
    MATERIALS HORIZONS, 2025, 12 (06) : 1757 - 1795
  • [7] Modification strategies on transition metal-based electrocatalysts for efficient water splitting
    Yaotian Yan
    Pengcheng Wang
    Jinghuang Lin
    Jian Cao
    Junlei Qi
    Journal of Energy Chemistry , 2021, (07) : 446 - 462
  • [8] Modification strategies on transition metal-based electrocatalysts for efficient water splitting
    Yan, Yaotian
    Wang, Pengcheng
    Lin, Jinghuang
    Cao, Jian
    Qi, Junlei
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 446 - 462
  • [9] Modification strategies on transition metal-based electrocatalysts for efficient water splitting
    Yan Y.
    Wang P.
    Lin J.
    Cao J.
    Qi J.
    Journal of Energy Chemistry, 2021, 58 : 446 - 462
  • [10] Recent Development and Future Perspectives of Amorphous Transition Metal-Based Electrocatalysts for Oxygen Evolution Reaction
    Guo, Tianqi
    Li, Lidong
    Wang, Zhongchang
    ADVANCED ENERGY MATERIALS, 2022, 12 (24)