Implicit residual approximation for multi-sensor data fusion in surface geometry measurement

被引:0
|
作者
Chen, Gengxiang [1 ,2 ]
Li, Yingguang [1 ]
Mehdi-Souzani, Charyar [2 ]
Liu, Xu [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Peoples R China
[2] Univ Sorbonne Paris Nord, Univ Paris Saclay, ENS Pars Saclay, LURPA, F-91190 Gif Sur Yvette, France
[3] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Surface measurement; Data fusion; Multi-sensor; Quality control; MODEL;
D O I
10.1016/j.jmsy.2024.05.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi -sensor measurement of complex products provides the opportunity for real-time digitising of the product geometry, thus becoming an enabling technology for the digital twin establishment of the manufacturing process. Data fusion of multi -sensor measurement results could improve the accuracy and efficiency of measurement because of the complementary characteristics of different sensors. The classical multi -sensor fusion method, Residual -approximation (RA) has been developed and demonstrated to be an effective solution in fusing heterogeneous point clouds. However, existing RA -based methods rely on the explicit z -direction residual function, which is inapplicable for complex surfaces with varying normals or implicit functions that widely exist in the modern manufacturing industry. Therefore, this research proposes an Implicit Residual Approximation (IRA) method that can represent the residual between different data sets implicitly as subresidual models. By constructing local clusters of measurement data, the complex residual function in the original space can be conveniently represented by the Gaussian mixture of the estimated sub -residual models. Both the simulation case and real measurement experiments are carried out to show the effectiveness of the proposed method. The experimental results demonstrate the superior performance of the proposed compared to the existing RA -based in both residual modelling and data fusion.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 50 条
  • [1] Multi-Sensor Measurement and Data Fusion
    Liu, Zheng
    Xiao, George
    Liu, Huan
    Wei, Hanbing
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2022, 25 (01) : 28 - 36
  • [2] Multi-sensor data fusion approach in series measurement
    Zheng Ying-wen
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 1462 - +
  • [3] Multi-sensor data fusion for accurate surface modeling
    Mahesh K. Singh
    Ashish Dutta
    K. S. Venkatesh
    Soft Computing, 2020, 24 : 14449 - 14462
  • [4] Multi-sensor data fusion for accurate surface modeling
    Sing, Mahesh K.
    Dutta, Ashish
    Venkatesh, K. S.
    SOFT COMPUTING, 2020, 24 (19) : 14449 - 14462
  • [5] Multi-sensor data fusion in the nondestructive measurement of kiwifruit texture
    Pourkhak, Behnam
    Mireei, Seyed Ahmad
    Sadeghi, Morteza
    Hemmat, Abbas
    MEASUREMENT, 2017, 101 : 157 - 165
  • [6] Multi-sensor Data Fusion for Measurement of Complex Freeform Surfaces
    Ren, M. J.
    Liu, M. Y.
    Cheung, C. F.
    Yin, Y. H.
    SEVENTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2016, 9903
  • [7] Multi-sensor Adaptive Data Fusion with Colored Measurement Noise
    Wu, Yao
    Cai, Meng
    Li, Jianxun
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6102 - 6107
  • [8] Surface profiler design with multi-sensor data fusion methods
    Lin, Jium-Ming
    Lin, Jung-Chie
    Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch'eng Hsuebo Pao, 2005, 26 (06): : 747 - 752
  • [9] An introduction to multi-sensor data fusion
    Llinas, J
    Hall, DL
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : E537 - E540
  • [10] An estimator for multi-sensor data fusion
    Thejaswi, C.
    Ganapathy, V.
    Patro, R. K.
    Raina, M.
    Ghosh, S. K.
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 2690 - +