Time-dependent density-functional theory study on nonlocal electron stopping for inertial confinement fusion

被引:0
|
作者
Nichols, Katarina A. [1 ,2 ]
Hu, S. X. [1 ,2 ,3 ]
White, Alexander J. [4 ]
Shaffer, Nathaniel R. [1 ]
Mihaylov, Deyan I. [1 ]
Arnold, Brennan [1 ,2 ]
Goncharov, Valeri N. [1 ,3 ]
Karasiev, Valentin V. [1 ]
Collins, Lee A. [4 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14611 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14611 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
MOLECULAR-DYNAMICS; TRANSPORT; MODEL;
D O I
10.1063/5.0201735
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding laser-target coupling is of the utmost importance for achieving high performance in laser-direct-drive (LDD) inertial confinement fusion (ICF) experiments. Thus, accurate modeling of electron transport and deposition through ICF-relevant materials and conditions is necessary to quantify the total thermal conduction and ablation. The stopping range is a key transport quantity used in thermal conduction models; in this work, we review the overall role that the electron mean free path (MFP) plays in thermal conduction and hydrodynamic simulations. The currently used modified Lee-More model employs various physics approximations. We discuss a recent model that uses time-dependent density functional theory (TD-DFT) to eliminate these approximations in both the calculation of the electron stopping power and corresponding MFP in conduction zone polystyrene (CH) plasma. In general, the TD-DFT calculations showed a larger MFP (lower stopping power) than the standard modified Lee-More model. Using the TD-DFT results, an analytical model for the electron deposition range, lambda(TD-DFT)(rho, T, K), was devised for CH plasmas between rho = [0.05 - 1.05] g/cm(3), KBT =[100 - 1000] eV. We implemented this model into LILAC, for simulations of a National Ignition Facility-scale LDD implosion and compared key physics quantities to ones obtained by simulations using the standard model. The implications of the obtained results and the path moving forward to calculate this same quantity in conduction-zone deuterium-tritium plasmas are further discussed, to hopefully close the understanding gap for laser target coupling in LDD-ICF simulations. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Time-dependent density-functional-theory calculations of the nonlocal electron stopping range for inertial confinement fusion applications
    Nichols, K. A.
    Hu, S. X.
    White, A. J.
    Goncharov, V. N.
    Mihaylov, D. I.
    Collins, L. A.
    Shaffer, N. R.
    Karasiev, V. V.
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [2] Time-dependent density-functional theory for the stopping power of an interacting electron gas for slow ions
    Nazarov, VU
    Pitarke, JM
    Kim, CS
    Takada, Y
    PHYSICAL REVIEW B, 2005, 71 (12)
  • [3] Time-dependent density-functional theory
    Rubio, Angel
    Marques, Miguel
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (22) : 4436 - 4436
  • [4] Time-dependent density-functional theory
    Dobson, JF
    ELECTRONIC DENSITY FUNCTIONAL THEORY: RECENT PROGRESS AND NEW DIRECTIONS, 1998, : 43 - 53
  • [5] Nonadiabatic electron dynamics in time-dependent density-functional theory
    Ullrich, C. A.
    Tokatly, I. V.
    PHYSICAL REVIEW B, 2006, 73 (23):
  • [6] DENSITY-FUNCTIONAL THEORY FOR TIME-DEPENDENT SYSTEMS
    RUNGE, E
    GROSS, EKU
    PHYSICAL REVIEW LETTERS, 1984, 52 (12) : 997 - 1000
  • [7] DENSITY-FUNCTIONAL THEORY FOR TIME-DEPENDENT SYSTEMS
    DHARA, AK
    GHOSH, SK
    PHYSICAL REVIEW A, 1987, 35 (01): : 442 - 444
  • [8] Time-dependent density-functional theory for superfluids
    Chiofalo, ML
    Tosi, MP
    EUROPHYSICS LETTERS, 2001, 53 (02): : 162 - 168
  • [9] Progress in Time-Dependent Density-Functional Theory
    Casida, M. E.
    Huix-Rotllant, M.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 63, 2012, 63 : 287 - 323
  • [10] TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY FOR SUPERCONDUCTORS
    WACKER, OJ
    KUMMEL, R
    GROSS, EKU
    PHYSICAL REVIEW LETTERS, 1994, 73 (21) : 2915 - 2918