Stable biomarker discovery in multi-omics data via canonical correlation analysis

被引:0
|
作者
Pusa, Taneli [1 ]
Rousu, Juho [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
来源
PLOS ONE | 2024年 / 19卷 / 09期
基金
芬兰科学院;
关键词
INFLAMMATORY-BOWEL-DISEASE; GUT MICROBIOTA; STABILITY; SETS;
D O I
10.1371/journal.pone.0309921
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multi-omics analysis offers a promising avenue to a better understanding of complex biological phenomena. In particular, untangling the pathophysiology of multifactorial health conditions such as the inflammatory bowel disease (IBD) could benefit from simultaneous consideration of several omics levels. However, taking full advantage of multi-omics data requires the adoption of suitable new tools. Multi-view learning, a machine learning technique that natively joins together heterogeneous data, is a natural source for such methods. Here we present a new approach to variable selection in unsupervised multi-view learning by applying stability selection to canonical correlation analysis (CCA). We apply our method, StabilityCCA, to simulated and real multi-omics data, and demonstrate its ability to find relevant variables and improve the stability of variable selection. In a case study on an IBD microbiome data set, we link together metagenomics and metabolomics, revealing a connection between their joint structure and the disease, and identifying potential biomarkers. Our results showcase the usefulness of multi-view learning in multi-omics analysis and demonstrate StabilityCCA as a powerful tool for biomarker discovery.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning
    Huang, Yiran
    Zeng, Pingfan
    Zhong, Cheng
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [2] Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning
    Yiran Huang
    Pingfan Zeng
    Cheng Zhong
    BMC Bioinformatics, 25
  • [3] Multi-omics Data Integration and Network Inference for Biomarker Discovery in Glioma
    Coletti, Roberta
    Lopes, Marta B.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II, 2023, 14116 : 247 - 259
  • [4] Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis
    Qi, Lin
    Wang, Wei
    Wu, Tan
    Zhu, Lina
    He, Lingli
    Wang, Xin
    FRONTIERS IN GENETICS, 2021, 12
  • [5] Canonical correlation analysis for multi-omics: Application to cross-cohort analysis
    Jiang, Min-Zhi
    Aguet, Francois
    Ardlie, Kristin
    Chen, Jiawen
    Cornell, Elaine
    Cruz, Dan
    Durda, Peter B.
    Gabriel, Stacey E.
    Gerszten, Robert
    Guo, Xiuqing W.
    Johnson, Craig
    Kasela, Silva A.
    Lange, Leslie
    Lappalainen, Tuuli
    Liu, Yongmei P.
    Reiner, Alex
    Smith, Josh
    Sofer, Tamar D.
    Taylor, Kent P.
    Tracy, Russell J.
    VanDenBerg, David G.
    Wilson, James S.
    Rich, Stephen I.
    Rotter, Jerome I.
    Love, Michael M.
    Raffield, Laura
    Li, Yun
    PLOS GENETICS, 2023, 19 (05): : e1010517
  • [6] Multi-omics in IBD biomarker discovery: the missing links
    Metwaly, Amira
    Haller, Dirk
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2019, 16 (10) : 587 - 588
  • [7] A multi-omics approach for kidney cancer biomarker discovery
    Zieren, R. C.
    Clark, D. J.
    Dong, L.
    Moreno, L. F.
    Kuczler, M. D.
    Amend, S. R.
    De Reijke, T. M.
    Pienta, K. J.
    EUROPEAN UROLOGY, 2021, 79 : S741 - S741
  • [8] Multi-omics in IBD biomarker discovery: the missing links
    Amira Metwaly
    Dirk Haller
    Nature Reviews Gastroenterology & Hepatology, 2019, 16 : 587 - 588
  • [9] Sparse canonical correlation analysis applied to -omics studies for integrative analysis and biomarker discovery
    Cao, Dong-Sheng
    Liu, Shao
    Zeng, Wen-Bin
    Liang, Yi-Zeng
    JOURNAL OF CHEMOMETRICS, 2015, 29 (06) : 371 - 378
  • [10] SDGCCA: Supervised Deep Generalized Canonical Correlation Analysis for Multi-Omics Integration
    Moon, Sehwan
    Hwang, Jeongyoung
    Lee, Hyunju
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (08) : 892 - 907