The intermittency of renewable energy resources like solar and wind provides unstable outputs and may not comply with the energy demands at all time frames, and the network faces periodic surplus and shortage of energy. Dispatchable energy generation technologies that can be ramped up and down could be combined with intermittent renewables in hybrid systems to match the demand and to address the variability in generation. Currently, the commonly used dispatchable energy generation technologies are operating with fossil fuels that contribute to CO2 emissions. On the other hand, carbon capture technologies are costly, energy consuming and cannot be applied for small scales. Hence, a dispatchable energy generation technology that can utilize clean and renewable based alternative fuels such as hydrogen to maintain the grid flexibility and stability becomes attractive. In this context, micro gas turbines (MGTs) with high operation flexibility and the ability for operating with various fuels and flue mixtures can potentially represent a lucrative solution for reliable and efficient energy supply, contributing to realize a sustainable future. Therefore, this study investigates the performance of MGTs in hydrogen application, which is in line with ongoing hydrogen activities at UiS. To this end, this study focuses on the development of a physical model based on an existing Turbec T100 test rig. The modelling is carried out using UniSim software which is a commercial process simulation tool. The model is validated against steady-state experimental data obtained from the test rig operated by natural gas while the dynamic validation of model is a part of future work due to the lack of adequate transitional experimental data. Assuming necessary modifications to the engine, the effects of utilization of mixtures of hydrogen and natural gas from zero hydrogen to 100% hydrogen on the engine performance are analyzed at various operational conditions and compared with the standard natural gas fired engine.