Self-Sensing Performance of Cementitious Composites with Carbon and Recycled Carbon Fibres

被引:0
|
作者
Trochoutsou, Niki [1 ]
Smyl, Danny [2 ]
Torelli, Giacomo [3 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Sheffield, England
[2] Georgia Inst Technol, Dept Civil & Environm Engn, Atlanta, GA USA
[3] Univ Sheffield, Dept Civil & Struct Engn, Sheffield, England
基金
英国工程与自然科学研究理事会;
关键词
Carbon Fibres; Recycled Carbon Fibres; Self-sensing; Piezoresistivity; Electrical Resistance; Smart; Composites; ELECTRICAL-RESISTIVITY; PERCOLATION;
D O I
10.1007/978-3-031-53389-1_20
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the electrical-mechanical performance of cement-based mortar and concrete mixes incorporating carbon and recycled carbon fibres. Mortar mixes were produced with varying fibre content from 0.1% to 0.5% by volume for both types of fibres, while sand/cement and water/cement ratios were kept constant to achieve a similar composition in terms of mortar matrix. Concrete mixes were also produced incorporating 0.5% vol. of fibres and varying the ratio of coarse/fine aggregates from 1 to 2. Electrical measurements and mechanical characterisation tests were performed at 28 days while cyclic compression tests with concurrent measurements of electrical resistance were carried out to assess the piezoresistive response. The percolation threshold in both virgin and recycled carbon fibres was found to be approximately 0.1% vol. in mortar mixes, with mortars reinforced with recycled fibres showing higher sensitivity. The addition of higher amounts of coarse aggregates fibres led to a non-homogenous distribution of fibres within the mortar matrix and limited the piezoresistive response of the composite. The results highlight the potential of recycled carbon fibres in substituting expensive inclusions in smart applications, without compromising electrical and piezoresistive performance.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [1] Self-sensing ultra-lightweight engineered cementitious composites (ECC) with carbon fibres
    Ran, Hongyu
    Elchalakani, Mohamed
    Hu, Zhiheng
    Yehia, Sherif
    Sadakkathulla, Mohamed Ali
    Guo, Xiao
    MEASUREMENT, 2024, 237
  • [2] Self-sensing concrete made from recycled carbon fibres
    Segura, I
    Faneca, G.
    Torrents, J. M.
    Aguado, A.
    SMART MATERIALS AND STRUCTURES, 2019, 28 (10)
  • [3] A review on carbon-based self-sensing cementitious composites
    Han, Jinsheng
    Pan, Jinlong
    Cai, Jingming
    Li, Xiaopeng
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 265
  • [4] SELF-SENSING CHARACTERIZATION OF GNP AND CARBON BLACK FILLED CEMENTITIOUS COMPOSITES
    Jiang, Zhangfan
    Ozbulut, Osman E.
    Xing, Guohua
    PREOCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2019, 2020,
  • [5] Assessment of self-sensing capability of Carbon Black Engineered Cementitious Composites
    Deng, Hanwen
    Li, Hongliang
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 173 : 1 - 9
  • [6] Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide
    Zhang L.
    Zhan X.
    Han B.
    Xu K.
    Wang Y.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (09): : 5225 - 5240
  • [7] Investigation on Self-Sensing Capability of Different Grades of Carbon Black in Cementitious Composites
    Qasim, Muhammad Saeed
    Shabbir, Faisal
    Khan, Qaiser uz Zaman
    Raza, Ali
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (02) : 761 - 774
  • [8] Investigation on Self-Sensing Capability of Different Grades of Carbon Black in Cementitious Composites
    Muhammad Saeed Qasim
    Faisal Shabbir
    Qaiser uz Zaman Khan
    Ali Raza
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 761 - 774
  • [9] Carbon nanotube (CNT) reinforced cementitious composites for structural self-sensing purpose: A review
    Li, Lin
    Wei, Huan
    Hao, Yazhen
    Li, Yizheng
    Cheng, Wei
    Ismail, Yusuf Abshir
    Liu, Zhuangzhuang
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 392
  • [10] Self-sensing and piezoresistive performance of carbon fibre textile-reinforced cementitious composites under tensile loading
    Elseady, Amir A. E.
    Zhuge, Yan
    Ma, Xing
    Chow, Christopher W. K.
    Lee, Ivan
    Zeng, Junjie
    COMPOSITE STRUCTURES, 2025, 356