Automated Analysis of Split Kidney Function from CT Scans Using Deep Learning and Delta Radiomics

被引:0
|
作者
Correa-Medero, Ramon Luis [1 ]
Jeong, Jiwoong [1 ]
Patel, Bhavik [1 ,2 ]
Banerjee, Imon [1 ,2 ]
Abdul-Muhsin, Haidar [3 ]
机构
[1] Sch Comp & Augmented Intelligence, Arizona State University, AZ USA
[2] Dept Radiol, Mayo Clin Hosp, Phoenix, AZ USA
[3] Dept Urol, Mayo Clin Hosp, Phoenix, AZ USA
关键词
radiomics; CT imaging; differential function; segmentation; RENAL-FUNCTION; MANAGEMENT;
D O I
10.1089/end.2023.0488
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Differential kidney function assessment is an important part of preoperative evaluation of various urological interventions. It is obtained through dedicated nuclear medical imaging and is not yet implemented through conventional Imaging. Objective: We assess if differential kidney function can be obtained through evaluation of contrast-enhanced computed tomography(CT) using a combination of deep learning and (2D and 3D) radiomic features. Methods: All patients who underwent kidney nuclear scanning at Mayo Clinic sites between 2018-2022 were collected. CT scans of the kidneys were obtained within a 3-month interval before or after the nuclear scans were extracted. Patients who underwent a urological or radiological intervention within this time frame were excluded. A segmentation model was used to segment both kidneys. 2D and 3D radiomics features were extracted and compared between the two kidneys to compute delta radiomics and assess its ability to predict differential kidney function. Performance was reported using receiver operating characteristics, sensitivity, and specificity. Results: Studies from Arizona & Rochester formed our internal dataset (n = 1,159). Studies from Florida were separately processed as an external test set to validate generalizability. We obtained 323 studies from our internal sites and 39 studies from external sites. The best results were obtained by a random forest model trained on 3D delta radiomics features. This model achieved an area under curve (AUC) of 0.85 and 0.81 on internal and external test sets, while specificity and sensitivity were 0.84,0.68 on the internal set, 0.70, and 0.65 on the external set. Conclusion: This proposed automated pipeline can derive important differential kidney function information from contrast-enhanced CT and reduce the need for dedicated nuclear scans for early-stage differential kidney functional assessment. Clinical Impact: We establish a machine learning methodology for assessing differential kidney function from routine CT without the need for expensive and radioactive nuclear medicine scans.
引用
收藏
页码:817 / 823
页数:7
相关论文
共 50 条
  • [1] Automated Pulmonary Function Measurements from Preoperative CT Scans with Deep Learning
    Choi, Young Sang
    Oh, Jieun
    Ahn, Seonhui
    Hwangbo, Yul
    Choi, Jin-Ho
    2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22), 2022,
  • [2] Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning
    Weston, Alexander D.
    Korfiatis, Panagiotis
    Kline, Timothy L.
    Philbrick, Kenneth A.
    Kostandy, Petro
    Sakinis, Tomas
    Sugimoto, Motokazu
    Takahashi, Naoki
    Erickson, Bradley J.
    RADIOLOGY, 2019, 290 (03) : 669 - 679
  • [3] Automated Assessment of Vertebral Fractures from Chest CT Scans Using Deep Learning
    Nadeem, S.
    Comellas, A. P.
    Guha, I.
    Hoffman, E. A.
    Regan, E. A.
    Saha, P. K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [4] Automated Segmentation of Lymph Nodes on Neck CT Scans Using Deep Learning
    Al Hasan, Md Mahfuz
    Ghazimoghadam, Saba
    Tunlayadechanont, Padcha
    Mostafiz, Mohammed Tahsin
    Gupta, Manas
    Roy, Antika
    Peters, Keith
    Hochhegger, Bruno
    Mancuso, Anthony
    Asadizanjani, Navid
    Forghani, Reza
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (06): : 2955 - 2966
  • [5] Radiomics-based machine learning for automated detection of Pneumothorax in CT scans
    Dehbaghi, Hanieh Alimiri
    Khoshgard, Karim
    Sharini, Hamid
    Khairabadi, Samira Jafari
    Naleini, Farhad
    PLOS ONE, 2024, 19 (12):
  • [6] A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans
    Elton, Daniel C.
    Turkbey, Evrim B.
    Pickhardt, Perry J.
    Summers, Ronald M.
    MEDICAL PHYSICS, 2022, 49 (04) : 2545 - 2554
  • [7] Automated Segmentation of Abdominal Skeletal Muscle on Pediatric CT Scans Using Deep Learning
    Castiglione, James
    Somasundaram, Elanchezhian
    Gilligan, Leah A.
    Trout, Andrew T.
    Brady, Samuel
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (02)
  • [8] Coronary Artery Plaque Characterization from CCTA Scans Using Deep Learning and Radiomics
    Denzinger, Felix
    Wels, Michael
    Ravikumar, Nishant
    Breininger, Katharina
    Reidelshoefer, Anika
    Eckert, Joachim
    Suehling, Michael
    Schmermund, Axel
    Maier, Andreas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 593 - 601
  • [9] Automated Detection of Spinal Lesions From CT Scans via Deep Transfer Learning
    Camisa, Andrea
    Montanari, Giovanni
    Testa, Andrea
    Falzetti, Luigi
    Avnet, Sofia
    Baldini, Nicola
    Notarstefano, Giuseppe
    IEEE ACCESS, 2024, 12 : 65310 - 65322
  • [10] Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey
    Altini, Nicola
    Prencipe, Berardino
    Cascarano, Giacomo Donato
    Brunetti, Antonio
    Brunetti, Gioacchino
    Triggiani, Vito
    Carnimeo, Leonarda
    Marino, Francescomaria
    Guerriero, Andrea
    Villani, Laura
    Scardapane, Arnaldo
    Bevilacqua, Vitoantonio
    NEUROCOMPUTING, 2022, 490 : 30 - 53