International Knee Documentation Committee Radiographic Knee Joint Grading More Reliable Than Kellgren-Lawrence Grading and Other Grading Systems

被引:1
|
作者
Ilahi, Omer A. [1 ]
机构
[1] Texas Arthroscopy & Sports Med Inst, 6560 Fannin St,Ste 1016, Houston, TX 77030 USA
关键词
RELIABILITY;
D O I
10.1016/j.arthro.2023.11.036
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Kellgren-Lawrence grading appears to have become the de facto standard for reporting radiographic degeneration of knees, yet the much later-introduced and knee-specific International Knee Documentation Committee system has repeatedly been shown to have higher reliability. Although International Knee Documentation Committee radiographic grading does have limitations-especially in cases of severe gonarthrosis-it appears to be the most reliable current system suitable for the purposes of arthroscopic knee surgeons, and it was designed to encompass all 3 knee compartments. Posterior-anterior weight-bearing radiographs taken at approximately 45 degrees of knee flexion have repeatedly been shown to be more sensitive for revealing tibiofemoral degeneration than standard anterior-posterior weight-bearing views at or near full extension.
引用
收藏
页码:1716 / 1719
页数:4
相关论文
共 21 条
  • [1] A practical MRI grading system for osteoarthritis of the knee: Association with Kellgren-Lawrence radiographic scores
    Park, Hee-Jin
    Kim, Sam Soo
    Lee, So-Yeon
    Park, Noh-Hyuck
    Park, Ji-Yeon
    Choi, Yoon-Jung
    Jeon, Hyun-Jun
    EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (01) : 112 - 117
  • [2] Reliability of the International Knee Documentation Committee radiographic grading system
    Mehta, Vishal M.
    Paxton, Liz W.
    Fornalski, Stefan X.
    Csintalan, Rick P.
    Fithian, Donald C.
    AMERICAN JOURNAL OF SPORTS MEDICINE, 2007, 35 (06): : 933 - 935
  • [3] We may be closer to automated Kellgren-Lawrence grading for knee osteoarthritis than we thought
    Xi, Yin
    Chhabra, Avneesh
    EUROPEAN RADIOLOGY, 2025, 35 (04) : 2296 - 2297
  • [4] AUTOMATIC KNEE KELLGREN LAWRENCE GRADING WITH ARTIFICIAL INTELLIGENCE
    Norman, B. D.
    Pedoia, V.
    Noworolski, A.
    Link, T. M.
    Majumdar, S.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S436 - S437
  • [5] A comparative study between Antioxidant vitamin and Kellgren-Lawrence grading scale in knee osteoarthritis patients
    Dawn, I
    Sarkar, S.
    De, C.
    BANGLADESH JOURNAL OF MEDICAL SCIENCE, 2014, 13 (01): : 30 - 35
  • [6] Ultrasonographic Evaluation of Osteoarthritis-affected Knee Joints: Comparison with Kellgren-Lawrence Grading and Pain Scores
    Singh, Abhay Pratap
    Saran, Sonal
    Thukral, Brij Bhushan
    Kaushik, Ravikant
    JOURNAL OF MEDICAL ULTRASOUND, 2021, 29 (01) : 39 - 45
  • [7] Kellgren-Lawrence grading of knee osteoarthritis using deep learning: Diagnostic performance with external dataset and comparison with four readers
    Vaattovaara, Elias
    Panfilov, Egor
    Tiulpin, Aleksei
    Niinimaki, Tuukka
    Niinimaki, Jaakko
    Saarakkala, Simo
    Nevalainen, Mika T.
    OSTEOARTHRITIS AND CARTILAGE OPEN, 2025, 7 (02):
  • [8] DEFINING THRESHOLDS FOR THE KELLGREN-LAWRENCE GRADING BETWEEN 2 AND 3 FOR THE JAPANESE KNEE OSTEOARTHRITIS MEASURE QUESTIONNAIRE FOR URBAN INHABITANTS MORE THAN 65-YEAR OLD
    Huang, H.
    Ishijima, M.
    Kaneko, H.
    Liu, L.
    Aoki, T.
    Arita, H.
    Negishi, Y.
    Momoeda, M.
    Nagao, M.
    Kaneko, K.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 : S262 - S262
  • [9] Clinicians' heuristic assessments of radiographs compared with Kellgren-Lawrence and Ahlback ordinal grading: an exploratory study of knee radiographs using paired comparisons
    Pedersen, Mads Moller
    Mongelard, Kristian Breds Geoffroy
    Morup-Petersen, Anne
    Christensen, Karl Bang
    Odgaard, Anders
    BMJ OPEN, 2021, 11 (03):
  • [10] Generative AI in orthopedics: an explainable deep few-shot image augmentation pipeline for plain knee radiographs and Kellgren-Lawrence grading
    Littlefield, Nickolas
    Amirian, Soheyla
    Biehl, Jacob
    Andrews, Edward G.
    Kann, Michael
    Myers, Nicole
    Reid, Leah
    Yates Jr, Adolph J.
    McGrory, Brian J.
    Parmanto, Bambang
    Seyler, Thorsten M.
    Plate, Johannes F.
    Rashidi, Hooman H.
    Tafti, Ahmad P.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (11) : 2668 - 2678