Statistical control for spatio-temporal MEG/EEG source imaging with desparsified multi-task Lasso

被引:0
|
作者
Chevalier, Jerome-Alexis [1 ]
Alexandre, Gramfort [1 ]
Salmon, Joseph [2 ]
Bertrand, Thirion [1 ,3 ]
机构
[1] Inria Saclay, Paris, France
[2] Univ Montpellier, IMAG, Montpellier, France
[3] CEA, Fontenay Aux Roses, France
基金
欧洲研究理事会;
关键词
CONFIDENCE-INTERVALS; P-VALUES; MEG; INFERENCE; REGRESSION; BRAIN; LOCALIZATION; SEPARATION; SELECTION; SOFTWARE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting where and when brain regions activate in a cognitive task or in a given clinical condition is the promise of non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG). This problem, referred to as source localization, or source imaging, poses however a high-dimensional statistical inference challenge. While sparsity promoting regularizations have been proposed to address the regression problem, it remains unclear how to ensure statistical control of false detections. Moreover, M/EEG source imaging requires to work with spatio-temporal data and autocorrelated noise. To deal with this, we adapt the desparsified Lasso estimator -an estimator tailored for high dimensional linear model that asymptotically follows a Gaussian distribution under sparsity and moderate feature correlation assumptions- to temporal data corrupted with autocorrelated noise. We call it the desparsified multi-task Lasso (d-MTLasso). We combine d-MTLasso with spatially constrained clustering to reduce data dimension and with ensembling to mitigate the arbitrary choice of clustering; the resulting estimator is called ensemble of clustered desparsified multi-task Lasso (ecd-MTLasso). With respect to the current procedures, the two advantages of ecd-MTLasso are that i)it offers statistical guarantees and ii)it allows to trade spatial specificity for sensitivity, leading to a powerful adaptive method. Extensive simulations on realistic head geometries, as well as empirical results on various MEG datasets, demonstrate the high recovery performance of ecd-MTLasso and its primary practical benefit: offer a statistically principled way to threshold MEG/EEG source maps.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multi-subject MEG/EEG source imaging with sparse multi-task regression
    Janati, Hicham
    Bazeille, Thomas
    Thirion, Bertrand
    Cuturi, Marco
    Gramfort, Alexandre
    NEUROIMAGE, 2020, 220
  • [2] AutoSTL: Automated Spatio-Temporal Multi-Task Learning
    Zhang, Zijian
    Zhao, Xiangyu
    Miao, Hao
    Zhang, Chunxu
    Zhao, Hongwei
    Zhang, Junbo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4902 - 4910
  • [3] Multi-Task Learning for Spatio-Temporal Event Forecasting
    Zhao, Liang
    Sun, Qian
    Ye, Jieping
    Chen, Feng
    Lu, Chang-Tien
    Ramakrishnan, Naren
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1503 - 1512
  • [4] MEG/EEG source localization using spatio-temporal sparse representations
    Polonsky, A
    Zibulevsky, M
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 1001 - 1008
  • [5] Spatio-Temporal Multi-Task Learning via Tensor Decomposition
    Xu, Jianpeng
    Zhou, Jiayu
    Tan, Pang-Ning
    Liu, Xi
    Luo, Lifeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2764 - 2775
  • [6] Spatio-temporal Tensor Multi-Task Learning for Precision fertilization
    Zhang, Yu
    Liu, Tong
    Li, Yang
    Wang, Ruijing
    Huang, He
    Yang, Po
    20TH INT CONF ON UBIQUITOUS COMP AND COMMUNICAT (IUCC) / 20TH INT CONF ON COMP AND INFORMATION TECHNOLOGY (CIT) / 4TH INT CONF ON DATA SCIENCE AND COMPUTATIONAL INTELLIGENCE (DSCI) / 11TH INT CONF ON SMART COMPUTING, NETWORKING, AND SERV (SMARTCNS), 2021, : 398 - 405
  • [7] Distribution Preserving Multi-Task Regression for Spatio-Temporal Data
    Liu, Xi
    Tan, Pang-Ning
    Abraham, Zubin
    Luo, Lifeng
    Hatami, Pouyan
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1134 - 1139
  • [8] A distributed spatio-temporal EEG/MEG inverse solver
    Ou, Wanmei
    Haemaelaeinen, Matti S.
    Golland, Polina
    NEUROIMAGE, 2009, 44 (03) : 932 - 946
  • [9] A Distributed Spatio-temporal EEG/MEG Inverse Solver
    Ou, Wanmei
    Golland, Polina
    Haemaelaeinen, Matti
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT I, PROCEEDINGS, 2008, 5241 : 26 - +
  • [10] Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning
    Kia, Seyed Mostafa
    Pedregosa, Fabian
    Blumenthal, Anna
    Passerini, Andrea
    JOURNAL OF NEUROSCIENCE METHODS, 2017, 285 : 97 - 108