Receptive field enhancement and attention feature fusion network for underwater object detection

被引:0
|
作者
Xu, Huipu [1 ]
He, Zegang [1 ]
Chen, Shuo [1 ]
机构
[1] Dalian Maritime Univ, Coll Marine Elect Engn, Dalian, Peoples R China
关键词
underwater image; object detection; receptive field enhancement; attention feature fusion;
D O I
10.1117/1.JEI.33.3.033007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
. Underwater environments have characteristics such as unclear imaging and complex backgrounds that lead to poor performance when applying mainstream object detection models directly. To improve the accuracy of underwater object detection, we propose an object detection model, RF-YOLO, which uses a receptive field enhancement (RFE) module in the backbone network to finish RFE and extract more effective features. We design the free-channel iterative attention feature fusion module to reconstruct the neck network and fuse different scales of feature layers to achieve cross-channel attention feature fusion. We use Scylla-intersection over union (SIoU) as the loss function of the model, which makes the model converge to the optimal direction of training through the angle cost, distance cost, shape cost, and IoU cost. The network parameters increase after adding modules, and the model is not easy to converge to the optimal state, so we propose a training method that effectively mines the performance of the detection network. Experiments show that the proposed RF-YOLO achieves a mean average precision of 87.56% and 86.39% on the URPC2019 and URPC2020 datasets, respectively. Through comparative experiments and ablation experiments, it was verified that the proposed network model has a higher detection accuracy in complex underwater environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Efficient underwater object detection based on feature enhancement and attention detection head
    Xingkun Li
    Yuhao Zhao
    Hu Su
    Yugang Wang
    Guodong Chen
    Scientific Reports, 15 (1)
  • [2] Underwater object detection algorithm based on channel attention and feature fusion
    Zhang Y.
    Li X.
    Sun Y.
    Liu S.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2022, 40 (02): : 433 - 441
  • [3] Multi-Scale Feature Fusion Enhancement for Underwater Object Detection
    Xiao, Zhanhao
    Li, Zhenpeng
    Li, Huihui
    Li, Mengting
    Liu, Xiaoyong
    Kong, Yinying
    SENSORS, 2024, 24 (22)
  • [4] Light field salient object detection network based on feature enhancement and mutual attention
    Zhu, Xi
    Xia, Huai
    Wang, Xucheng
    Zheng, Zhenrong
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [5] Object Detection Network Based on Feature Fusion and Attention Mechanism
    Zhang, Ying
    Chen, Yimin
    Huang, Chen
    Gao, Mingke
    FUTURE INTERNET, 2019, 11 (01):
  • [6] Object Detection by Attention-Guided Feature Fusion Network
    Shi, Yuxuan
    Fan, Yue
    Xu, Siqi
    Gao, Yue
    Gao, Ran
    SYMMETRY-BASEL, 2022, 14 (05):
  • [7] Enhancement-fusion feature pyramid network for object detection
    Dong, Shifeng
    Wang, Rujing
    Du, Jianming
    Jiao, Lin
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (01)
  • [8] Feature Fusion Network with Local Information Exchange for Underwater Object Detection
    Liu, Xiaopeng
    Ma, Pengwei
    Chen, Long
    ELECTRONICS, 2025, 14 (03):
  • [9] Spatiotemporal Feature Enhancement Network for Blur Robust Underwater Object Detection
    Zhou, Hao
    Qi, Lu
    Huang, Hai
    Yang, Xu
    Yang, Jing
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (05) : 1814 - 1828
  • [10] Receptive Field Fusion RetinaNet for Object Detection
    Huang, He
    Feng, Yong
    Zhou, MingLiang
    Qiang, Baohua
    Yan, Jielu
    Wei, Ran
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (10)