Comparative analysis of heavy ions and alpha particles impact on gate-all-around TFETs and gate-all-around MOSFETs

被引:1
|
作者
Kumar, Pankaj [1 ]
Koley, Kalyan [2 ]
Kumar, Subindu [3 ]
机构
[1] Graphic Era Deemed Univ, Dept ECE, Dehra Dun 248002, India
[2] Birla Inst Technol, Dept ECE, Mesra 835215, India
[3] Indian Inst Technol, Dept Elect Engn, Dhanbad 826004, India
来源
MICRO AND NANOSTRUCTURES | 2024年 / 192卷
关键词
GAA TFET; GAA MOSFET; Heavy ions; Alpha particles; Bipolar gain; DEPLETED SOI TECHNOLOGIES; TUNNEL FET; SIMULATION; TRANSISTOR;
D O I
10.1016/j.micrna.2024.207875
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The single-event-transient (SET) effect due to heavy ions and alpha particles irradiation on n-type gate-all-around tunnel field effect transistor (GAA TFET) and n-type gate-all-around MOSFET (GAA MOSFET) has been carried out. Due to differences in carrier injection mechanisms, the generated electron-hole pairs (EHPs) due to high-energy particles (HEPs) act differently on the device. In addition, the impact of HEPs (i.e., heavy ions and alpha particles) on several locations along the channel are analyzed followed by the analysis of different energies of heavy ions and alpha particles irradiation on the device. Further, the impact of varying striking angles of HEPs on the device is also analyzed to get a close match as practically exposed device characteristic. Finally, the bipolar gain of the device has been analyzed which shows GAA TFET device has more immunity toward heavy ions strike and weak immunity toward alpha particle strikes when compared to the GAA MOSFET counterpart.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Modeling of nanoscale gate-all-around MOSFETs
    Jiménez, D
    Sáenz, JJ
    Iñíguez, B
    Suñé, J
    Marsal, LF
    Pallarès, J
    IEEE ELECTRON DEVICE LETTERS, 2004, 25 (05) : 314 - 316
  • [2] From gate-all-around to nanowire MOSFETs
    Colinge, Jean-Pierre
    CAS 2007 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2007, : 11 - 17
  • [3] RF and noise model of gate-all-around MOSFETs
    Lazaro, A.
    Iniguez, B.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2008, 23 (07)
  • [4] Design optimization of gate-all-around (GAA) MOSFETs
    Song, JY
    Choi, WY
    Park, JH
    Lee, JD
    Park, BG
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (03) : 186 - 191
  • [5] Corner effects in double-gate/gate-all-around MOSFETs
    Hou Xiao-Yu
    Zhou Fa-Long
    Huang Ru
    Zhang Xing
    CHINESE PHYSICS, 2007, 16 (03): : 812 - 816
  • [6] Design study of the gate-all-around silicon nanosheet MOSFETs
    Lee, Yongwoo
    Park, Geon-Hwi
    Choi, Bongsik
    Yoon, Jinsu
    Kim, Hyo-Jin
    Kim, Dae Hwan
    Kim, Dong Myong
    Kang, Min-Ho
    Choi, Sung-Jin
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (03)
  • [7] High Frequency and Noise Model of Gate-All-Around MOSFETs
    Nae, B.
    Lazaro, A.
    Iniguez, B.
    PROCEEDINGS OF THE 2009 SPANISH CONFERENCE ON ELECTRON DEVICES, 2009, : 112 - 115
  • [8] An analytical mobility model for square Gate-All-Around MOSFETs
    Tienda-Luna, I. M.
    Roldan, J. B.
    Ruiz, F. G.
    Blanque, C. M.
    Gamiz, F.
    SOLID-STATE ELECTRONICS, 2013, 90 : 18 - 22
  • [9] Structure effects in the gate-all-around silicon nanowire MOSFETs
    Liang, Gengchiau
    EDSSC: 2007 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, VOLS 1 AND 2, PROCEEDINGS, 2007, : 129 - 132
  • [10] Gate-all-around Ge FETs
    Liu, C. W.
    Chen, Y. -T.
    Hsu, S. -H.
    SIGE, GE, AND RELATED COMPOUNDS 6: MATERIALS, PROCESSING, AND DEVICES, 2014, 64 (06): : 317 - 328