GhostMorph: A Computationally Efficient Model for Deformable Inter-Subject Registration

被引:0
|
作者
Hu, Mingzhe [1 ]
Pan, Shaoyan [2 ]
Yang, Xiaofeng [1 ,2 ,3 ]
机构
[1] Emory Univ, Dept Comp Sci & Informat, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Radiat Oncol, Winship Canc Inst, Sch Med, Atlanta, GA 30322 USA
关键词
Deformable Registration; Computation Efficiency; Depth-wise Separable Convolution; IMAGE REGISTRATION;
D O I
10.1117/12.3006851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents GhostMorph, an innovative model for deformable inter-subject registration in medical imaging, inspired by GhostNet's principles. GhostMorph addresses the computational challenges inherent in medical image registration, particularly in deformable registration where complex local and global deformations are prevalent. By integrating Ghost modules and 3D depth-wise separable convolutions into its architecture, GhostMorph significantly reduces computational demands while maintaining high performance. The study benchmarks GhostMorph against state-of-the-art registration methods using the Liver Tumor Segmentation Benchmark (LiTS) dataset, demonstrating its comparable accuracy and improved computational efficiency. GhostMorph emerges as a viable, scalable solution for real-time and resource-constrained clinical scenarios, marking a notable advancement in medical image registration technology.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] An AI-Based Approach to Inter-Subject Deformable Image Registration
    Jiang, J.
    Thor, M.
    Rimner, A.
    Deasy, J.
    Veeraraghavan, H.
    MEDICAL PHYSICS, 2022, 49 (06) : E343 - E344
  • [2] INTER-SUBJECT FMRI REGISTRATION BASED ON FUNCTIONAL NETWORKS
    Chen, Hanbo
    Zhao, Yu
    Li, Yujie
    Lv, Jinglei
    Liu, Tianming
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 863 - 867
  • [3] Contour-model-guided nonlinear deformation model for inter-subject image registration
    Shih, WSV
    Lin, WC
    Chen, CT
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 611 - 620
  • [4] Automatic inter-subject registration of whole body images
    Li, Xia
    Peterson, Todd E.
    Gore, John C.
    Dawant, Benoit M.
    BIOMEDICAL IMAGE REGISTRATION, PROCEEDINGS, 2006, 4057 : 18 - 25
  • [5] Inter-subject MR-PET image registration and integration
    Lin, KP
    Chen, TS
    Yao, WJ
    Wu, LC
    Liu, RS
    Huang, SC
    1996 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1-3, 1997, : 1908 - 1912
  • [6] Ventricle registration for inter-subject white matter lesion analysis
    Jongen, C
    van der Grond, J
    Pluim, JPW
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS, 2004, 3216 : 712 - 719
  • [7] INTER-SUBJECT COMMUNICATION
    HAKMILLER, KL
    PSYCHOLOGICAL REPORTS, 1971, 28 (03) : 956 - +
  • [8] Multi-modal inter-subject registration of mouse brain images
    Li, Xia
    Yankeelov, Thomas E.
    Rosen, Glenn
    Gore, John C.
    Dawant, Benoit M.
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [9] Impact of inter-subject image registration on group analysis of fMRI data
    Ardekani, BA
    Bachman, AH
    Strother, SC
    Fujibayashi, Y
    Yonekura, Y
    QUANTITATION IN BIOMEDICAL IMAGING WITH PET AND MRI, 2004, (1265): : 49 - 59
  • [10] Construction and evaluation of an average CT brain image for inter-subject registration
    Jongen, C
    Pluim, JPW
    Nederkoorn, PJ
    Viergever, MA
    Niessen, WJ
    COMPUTERS IN BIOLOGY AND MEDICINE, 2004, 34 (08) : 647 - 662