Sugar crops, namely sugarcane, sugar beet and sweet sorghum, rank among the top essential crops for both food and industry globally, yet their production is impeded by considerable abiotic stresses. Abiotic stresses, which include drought, salinity, temperature fluctuations and stress from heavy metals, pose a global challenge to agricultural production and productivity by threatening human food security and livelihoods. To address this issue, genome editing is widely adopted to create abiotic stress-resilient crops in order to increase crop yield. Fortunately, recent technologies like CRISPR/Cas9-clustered regularly interspaced short palindromic repeats (CRISPR)-associated system/CRISPR-associated endonuclease genome editing are effective in creating abiotic stress-resistant varieties, which will be useful for producers to withstand challenging climatic conditions. It allows researchers to evade the prolonged process of traditional breeding and change the genome in a much shorter period. CRISPR/Cas9 is a renowned, powerful genome-editing tool and is beneficial in biological research since it may change the genome in several ways. It has unlocked new possibilities for plant breeding and carries the capability to revolutionise the field. This paper reviews the use of CRISPR/Cas9 in enhancing abiotic stress tolerant designer crops with the aim of enhancing their quality. In this review, we have highlighted the various gene-editing techniques, mechanism and classification of CRISPR system and its applications against abiotic stress in various crops including a special reference of CRISPR/Cas9 technology in sugar crops. The implementation of the CRISPR/Cas9 technique will support the sustainable agriculture and maximise yield by tackling the environmental stresses.