DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
被引:0
|
作者:
Zhang, Yangtian
论文数: 0引用数: 0
h-index: 0
机构:
Mila Quebec AI Inst, Montreal, PQ, Canada
Univ Montreal, Montreal, PQ, CanadaMila Quebec AI Inst, Montreal, PQ, Canada
Zhang, Yangtian
[1
,2
]
Zhang, Zuobai
论文数: 0引用数: 0
h-index: 0
机构:
Mila Quebec AI Inst, Montreal, PQ, Canada
Univ Montreal, Montreal, PQ, CanadaMila Quebec AI Inst, Montreal, PQ, Canada
Zhang, Zuobai
[1
,2
]
Zhong, Bozitao
论文数: 0引用数: 0
h-index: 0
机构:
Mila Quebec AI Inst, Montreal, PQ, Canada
Univ Montreal, Montreal, PQ, CanadaMila Quebec AI Inst, Montreal, PQ, Canada
Zhong, Bozitao
[1
,2
]
Misra, Sanchit
论文数: 0引用数: 0
h-index: 0
机构:
Intel, Santa Clara, CA USAMila Quebec AI Inst, Montreal, PQ, Canada
Misra, Sanchit
[3
]
Tang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Mila Quebec AI Inst, Montreal, PQ, Canada
HEC Montreal, Montreal, PQ, Canada
CIFAR AI Res Chair, Montreal, PQ, CanadaMila Quebec AI Inst, Montreal, PQ, Canada
Tang, Jian
[1
,4
,5
]
机构:
[1] Mila Quebec AI Inst, Montreal, PQ, Canada
[2] Univ Montreal, Montreal, PQ, Canada
[3] Intel, Santa Clara, CA USA
[4] HEC Montreal, Montreal, PQ, Canada
[5] CIFAR AI Res Chair, Montreal, PQ, Canada
来源:
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023)
|
2023年
基金:
加拿大自然科学与工程研究理事会;
关键词:
ACCURATE PREDICTION;
ALGORITHMS;
NETWORKS;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Proteins play a critical role in carrying out biological functions, and their 3D structures are essential in determining their functions. Accurately predicting the conformation of protein side-chains given their backbones is important for applications in protein structure prediction, design and protein-protein interactions. Traditional methods are computationally intensive and have limited accuracy, while existing machine learning methods treat the problem as a regression task and overlook the restrictions imposed by the constant covalent bond lengths and angles. In this work, we present DiffPack, a torsional diffusion model that learns the joint distribution of side-chain torsional angles, the only degrees of freedom in side-chain packing, by diffusing and denoising on the torsional space. To avoid issues arising from simultaneous perturbation of all four torsional angles, we propose autoregressively generating the four torsional angles from chi(1) to chi(4) and training diffusion models for each torsional angle. We evaluate the method on several benchmarks for protein side-chain packing and show that our method achieves improvements of 11.9% and 13.5% in angle accuracy on CASP13 and CASP14, respectively, with a significantly smaller model size (60x fewer parameters). Additionally, we show the effectiveness of our method in enhancing side-chain predictions in the AlphaFold2 model. Code is available at https://github.com/DeepGraphLearning/DiffPack.
机构:
Boston Univ, Div Syst Engn, Boston, MA 02215 USA
Boston Univ, Ctr Informat & Syst Engn, Boston, MA 02215 USABoston Univ, Div Syst Engn, Boston, MA 02215 USA
Moghadasi, Mohammad
Mirzaei, Hanieh
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Div Syst Engn, Boston, MA 02215 USA
Boston Univ, Ctr Informat & Syst Engn, Boston, MA 02215 USABoston Univ, Div Syst Engn, Boston, MA 02215 USA
Mirzaei, Hanieh
论文数: 引用数:
h-index:
机构:
Mamonov, Artem
Vakili, Pirooz
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Div Syst Engn, Boston, MA 02215 USA
Boston Univ, Dept Mech Engn, Boston, MA 02215 USABoston Univ, Div Syst Engn, Boston, MA 02215 USA
Vakili, Pirooz
Vajda, Sandor
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Biomed Engn, Boston, MA 02215 USABoston Univ, Div Syst Engn, Boston, MA 02215 USA
Vajda, Sandor
Paschalidis, Ioannis Ch.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Div Syst Engn, Boston, MA 02215 USA
Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USABoston Univ, Div Syst Engn, Boston, MA 02215 USA