DANet: Multi-scale UAV Target Detection with Dynamic Feature Perception and Scale-aware Knowledge Distillation

被引:1
|
作者
Fang, Houzhang [1 ]
Liao, Zikai [1 ]
Wang, Lu [1 ]
Li, Qingshan [1 ]
Chang, Yi [2 ]
Yan, Luxin [2 ]
Wang, Xuhua [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle; multi-scale infrared target detection; attention mechanism; contrastive learning; knowledge distillation;
D O I
10.1145/3581783.3612146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-scale infrared unmanned aerial vehicle ( UAV) targets (IRUTs) detection under dynamic scenarios remains a challenging task due to weak target features, varying shapes and poses, and complex background interference. Current detection methods find it difficult to address the above issues accurately and efficiently. In this paper, we design a dynamic attentive network (DANet) incorporating a scale-adaptive feature enhancement mechanism (SaFEM) and an attention-guided cross-weighting feature aggregator (ACFA). The SaFEM adaptively adjusts the network's receptive fields at hierarchical network levels leveraging separable deformable convolution (SDC), which enhances the network's multi-scale IRUT awareness. The ACFA, modulated by two crossing attention mechanisms, strengthens structural and semantic properties on neighboring levels for the accurate representation of multi-scale IRUT features from different levels. A plug-and-play anti-distractor contrastive regularization (ADCR) is also imposed on our DANet, which enforces similarity on features of targets and distractors from a new uncompressed feature projector (UFP) to increase the network's anti-distractor ability in complex backgrounds. To further increase the multi-scale UAV detection performance of DANet while maintaining its efficiency superiority, we propose a novel scale-specific knowledge distiller (SSKD) based on a divide-and-conquer strategy. For the "divide" stage, we intendedly construct three task-oriented teachers to learn tailored knowledge for small-, medium-, and largescale IRUTs. For the "conquer" stage, we propose a novel elementwise attentive distillation module (EADM), where we employ a pixel-wise attention mechanism to highlight teacher and student IRUT features, and incorporate IRUT-associated prior knowledge for the collaborative transfer of refined multi-scale IRUT features to our DANet. Extensive experiments on real infrared UAV datasets demonstrate that our DANet is able to detect multi-scale UAVs with a satisfactory balance between accuracy and efficiency.
引用
收藏
页码:2121 / 2130
页数:10
相关论文
共 50 条
  • [1] Knowledge Distillation Anomaly Detection with Multi-Scale Feature Fusion
    Yadang C.
    Liuren C.
    Wenbin Y.
    Jiale Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (10): : 1542 - 1549
  • [2] Multi-Scale Feature Distillation for Anomaly Detection
    Yao, Xincheng
    Li, Ruoqi
    Zhang, Chongyang
    Huang, Kefeng
    Sun, Kaiyu
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [3] A Scale-Aware Pyramid Network for Multi-Scale Object Detection in SAR Images
    Tang, Linbo
    Tang, Wei
    Qu, Xin
    Han, Yuqi
    Wang, Wenzheng
    Zhao, Baojun
    REMOTE SENSING, 2022, 14 (04)
  • [4] Scale-aware Hierarchical Loss: A Multipath RPN for Multi-scale Pedestrian Detection
    Zhang, Xiaowai
    Li, Bo
    Hu, Haimiao
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [5] Multi-scale Feature Extraction and Fusion for Online Knowledge Distillation
    Zou, Panpan
    Teng, Yinglei
    Niu, Tao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 126 - 138
  • [6] UAV reaction detection based on multi-scale feature fusion
    He, Jianfeng
    Liu, Ming
    Yu, Chuanjiang
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 640 - 643
  • [7] A multi-scale feature fusion target detection algorithm
    Dong, Chong
    Li, Jingmei
    Wang, Jiaxiang
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2018, 10836
  • [8] Multi-scale Lightweight Algorithm for UAV Aerial Target Detection
    Wang, Lingchao
    Ai, Qiang
    Shen, Xueli
    ENGINEERING LETTERS, 2024, 32 (12) : 2324 - 2335
  • [9] MFP-DETR: Marine UAV target detection based on multi-scale fuzzy perception
    Zou, Ting
    Ge, Quanbo
    Huang, Yanjun
    NEUROCOMPUTING, 2025, 635
  • [10] Scale-aware feature pyramid architecture for marine object detection
    Fengqiang Xu
    Huibing Wang
    Jinjia Peng
    Xianping Fu
    Neural Computing and Applications, 2021, 33 : 3637 - 3653