A Multidimensional Detection Model of Android Malicious Applications Based on Dynamic and Static Analysis

被引:0
|
作者
Zhang, Hao [1 ,2 ]
Liu, Donglan [1 ]
Liu, Xin [1 ]
Ma, Lei [1 ]
Wang, Rui [1 ]
Zhang, Fangzhe [1 ]
Sun, Lili [1 ]
Zhao, Fuhui [1 ]
机构
[1] State Grid Shandong Elect Power Res Inst, Jinan, Peoples R China
[2] Shandong Smart Grid Technol Innovat Ctr, Jinan, Peoples R China
关键词
Android malware; Dynamic and static analysis; Multi-dimensional features;
D O I
10.1007/978-981-99-9247-8_2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an approach utilizing static and dynamic analysis techniques to identify malicious Android applications. We extract static features, such as certificate information, and monitor real-time behavior to capture application properties. Using machine learning, our approach accurately differentiate between benign and malicious applications. We introduce the concept of "Multi-dimensional features", combining static and dynamic features into unique application fingerprints. This enables us to infer application families and target groups of related malware. Tested on a dataset of 8000 applications, our approach demonstrates high detection rates, low false positive and false negative rates. The results highlight the effectiveness of our comprehensive analysis in accurately identifying and mitigating Android malware threats.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [1] A Dynamic and Static Combined Android Malicious Code Detection Model based on SVM
    Du, Jinran
    Chen, Huajun
    Zhong, Weijie
    Liu, Zhen
    Xu, Aidong
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 801 - 806
  • [2] A detection model of malicious Android applications based on Naive Bayes
    Wang, Chundong
    Zhao, Yi
    Mo, Xiuliang
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2019, 11 (04) : 508 - 515
  • [3] Exploring the Malicious Android Applications and Reducing Risk using Static Analysis
    Kavitha, K.
    Salini, P.
    Ilamathy, V
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 1316 - 1319
  • [4] A Hidden Markov Model Detection of Malicious Android Applications at Runtime
    Chen, Yang
    Ghorbanzadeh, Mo
    Ma, Kevin
    Clancy, Charles
    McGwier, Robert
    2014 23RD WIRELESS AND OPTICAL COMMUNICATION CONFERENCE (WOCC), 2014,
  • [5] Detection of Malicious Applications on Android OS
    Di Cerbo, Francesco
    Girardello, Andrea
    Michahelles, Florian
    Voronkova, Svetlana
    COMPUTATIONAL FORENSICS, 2011, 6540 : 138 - +
  • [6] On the Efficacy of Static Features to Detect Malicious Applications in Android
    Geneiatakis, Dimitris
    Satta, Riccardo
    Fovino, Igor Nai
    Neisse, Ricardo
    TRUST, PRIVACY AND SECURITY IN DIGITAL BUSINESS, 2015, 9264 : 87 - 98
  • [7] A Fusion Malicious Social Bots Detection Model Based on Static and Dynamic Features
    Jiang, Hongling
    Liu, Dan
    Kang, Haiyan
    Wang, Yilin
    International Journal of Network Security, 2022, 24 (02) : 321 - 332
  • [8] A Review of Static Detection Methods for Android Malicious Application
    Pan J.
    Cui Z.
    Lin G.
    Chen X.
    Zheng L.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (08): : 1875 - 1894
  • [9] Androshield: Automated android applications vulnerability detection, a hybrid static and dynamic analysis approach
    Amin A.
    Eldessouki A.
    Magdy M.T.
    Abdeen N.
    Hindy H.
    Hegazy I.
    Information (Switzerland), 2019, 10 (10):
  • [10] AndroShield: Automated Android Applications Vulnerability Detection, a Hybrid Static and Dynamic Analysis Approach
    Amin, Amr
    Eldessouki, Amgad
    Magdy, Menna Tullah
    Abdeen, Nouran
    Hindy, Hanan
    Hegazy, Islam
    INFORMATION, 2019, 10 (10)