Small-Space Spectral Sparsification via Bounded-Independence Sampling

被引:0
|
作者
Doron, Dean [1 ]
Murtagh, Jack [2 ]
Vadhan, Salil [2 ]
Zuckerman, David [3 ]
机构
[1] Ben Gurion Univ Negev, David Ben Gurion Blvd 1, IL-84105 Beer Sheva, Israel
[2] Harvard Univ, 150 Western Ave, Allston, MA 02134 USA
[3] Univ Texas Austin, 2317 Speedway, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Derandomization; space-bounded computation; graph sparsification; PARALLEL ALGORITHM; FASTER ALGORITHMS; SET; GRAPHS;
D O I
10.1145/3637034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph G on n vertices described by a binary string of length N, an integer k <= log n, and an error parameter epsilon > 0, our algorithm runs in space (O) over tilde (k log(N center dot w(max)/w(min))), where wmax and wmin are the maximum and minimum edge weights in G, and produces a weighted graph H with (O) over tilde (n(1+2/k)/epsilon(2)) edges that spectrally approximates G, in the sense of Spielman and Teng, up to an error of epsilon. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava's effective resistance-based edge sampling algorithm and uses results from recent work on space-bounded Laplacian solvers. In particular, we demonstrate an inherent trade-off (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by k above, and the resulting sparsity that can be achieved.
引用
收藏
页数:32
相关论文
共 4 条
  • [1] Fast Sampling via Spectral Independence Beyond Bounded-degree Graphs
    Bezakova, Ivona
    Galanis, Andreas
    Goldberg, Leslie Ann
    Stefankovic, Daniel
    ACM TRANSACTIONS ON ALGORITHMS, 2024, 20 (01)
  • [2] Approximating LZ77 via Small-Space Multiple-Pattern Matching
    Fischer, Johannes
    Gagie, Travis
    Gawrychowski, Pawel
    Kociumaka, Tomasz
    ALGORITHMS - ESA 2015, 2015, 9294 : 533 - 544
  • [3] Time and Space Efficient Spectral Clustering via Column Sampling
    Li, Mu
    Lian, Xiao-Chen
    Kwok, James T.
    Lu, Bao-Liang
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [4] Fast Computation of Small Cuts via Cycle Space Sampling
    Pritchard, David
    Thurimella, Ramakrishna
    ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (04)