Multi-Scale Feature Fusion Model for Bridge Appearance Defect Detection

被引:9
|
作者
Pang, Rong [1 ,2 ,3 ]
Yang, Yan [1 ]
Huang, Aiguo [1 ]
Liu, Yan [1 ]
Zhang, Peng [2 ,3 ]
Tang, Guangwu [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[2] China Merchants Chongqing Rd Engn Inspect Ctr Co, Chongqing 400067, Peoples R China
[3] State Key Lab Bridge Engn Struct Dynam, Chongqing 400067, Peoples R China
来源
BIG DATA MINING AND ANALYTICS | 2024年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
defect detection; Multi-scale Feature Fusion (MFF); Region Of Interest (ROI) alignment; lightweight network;
D O I
10.26599/BDMA.2022.9020048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although the Faster Region-based Convolutional Neural Network (Faster R-CNN) model has obvious advantages in defect recognition, it still cannot overcome challenging problems, such as time-consuming, small targets, irregular shapes, and strong noise interference in bridge defect detection. To deal with these issues, this paper proposes a novel Multi-scale Feature Fusion (MFF) model for bridge appearance disease detection. First, the Faster R-CNN model adopts Region Of Interest (ROI) pooling, which omits the edge information of the target area, resulting in some missed detections and inaccuracies in both detecting and localizing bridge defects. Therefore, this paper proposes an MFF based on regional feature Aggregation (MFF-A), which reduces the missed detection rate of bridge defect detection and improves the positioning accuracy of the target area. Second, the Faster R-CNN model is insensitive to small targets, irregular shapes, and strong noises in bridge defect detection, which results in a long training time and low recognition accuracy. Accordingly, a novel Lightweight MFF (namely MFF-L) model for bridge appearance defect detection using a lightweight network EfficientNetV2 and a feature pyramid network is proposed, which fuses multi-scale features to shorten the training speed and improve recognition accuracy. Finally, the effectiveness of the proposed method is evaluated on the bridge disease dataset and public computational fluid dynamic dataset.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Insulator Defect Detection Based on Multi-Scale Feature Fusion
    Bin L.
    Luyao Q.
    Xinshan Z.
    Zhimin G.
    Yangyang T.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2023, 38 (01): : 60 - 70
  • [2] Bridge crack detection method based on multi-scale feature fusion
    Wang, Yubian
    Zou, Chengzheng
    Song, Yajuan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 559 - 562
  • [3] Surface Defect Detection Based on Adaptive Multi-Scale Feature Fusion
    Wen, Guochen
    Cheng, Li
    Yuan, Haiwen
    Li, Xuan
    SENSORS, 2025, 25 (06)
  • [4] Defect Detection of Photovoltaic Modules Based on Multi-Scale Feature Fusion
    Tian, Hao
    Zhou, Qiang
    He, Chenlong
    Computer Engineering and Applications, 2024, 60 (03) : 340 - 347
  • [5] Metal Surface Defect Detection Based on a Transformer with Multi-Scale Mask Feature Fusion
    Zhao, Lin
    Zheng, Yu
    Peng, Tao
    Zheng, Enrang
    SENSORS, 2023, 23 (23)
  • [6] A Lightweight Road Defect Detection Method Based on Multi-scale Hybrid Feature Fusion
    Kuang, Jin
    Liu, Dong
    Lv, Hong
    Xu, Xinyue
    Zhang, Lingrong
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [7] Insulator Defect Detection Based on Lightweight Network and Enhanced Multi-scale Feature Fusion
    Chen K.
    Liu X.
    Jia L.
    Fang Y.
    Zhao C.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (03): : 1289 - 1301
  • [8] Object detection of steel surface defect based on multi-scale enhanced feature fusion
    Lin S.
    Peng X.
    Wang D.
    Lin Z.
    Lin J.
    Guo T.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (07): : 1075 - 1086
  • [9] Fabric Defect Detection via Multi-scale Feature Fusion-Based Saliency
    Liu, Zhoufeng
    Huang, Ning
    Li, Chunlei
    Guo, Zijing
    Gao, Chengli
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 240 - 251
  • [10] MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles
    Sun, Lianshan
    Wei, Jingxue
    Du, Hanchao
    Zhang, Yongbin
    He, Lifeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (09) : 1652 - 1655