Rogue wave, lump, kink, periodic and breather-like solutions of the (2+1)-dimensional KdV equation

被引:2
|
作者
Zheng, Wanguang [1 ]
Liu, Yaqing [1 ]
Chu, Jingyi [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2025年 / 39卷 / 11期
基金
北京市自然科学基金;
关键词
Bilinear neural network method; activation function; test function; Novel solution; MULTIPLE-SOLITON-SOLUTIONS; PARAMETERS; TRANSFORM;
D O I
10.1142/S0217984924504633
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, the (2+1)-dimensional KdV equation is investigated by using the bilinear neural network method (BNNM). We construct six neural network models, extending beyond single hidden layer models to create deeper and broader network structures (e.g. [3-3-1], [3-4-1], [3-1-3-1], [3-4-1-1], [3-2-2-1] and [3-2-3-1-1] models). Introducing specific activation functions into the neural network model enables the generation of various test functions, resulting in novel solutions for equations that include rogue wave solutions, lump-kink solutions, periodic soliton solution, breather-like solutions and lump solutions. The physical properties of these novel solutions are vividly depicted through three-dimensional plots, density plots, and curve plots. The findings contribute to a better understanding of the propagation behavior of shallow water waves.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Lump periodic wave, soliton periodic wave, and breather periodic wave solutions for third-order (2+1)-dimensional equation
    Fokou, M.
    Kofane, T. C.
    Mohamadou, A.
    Yomba, E.
    PHYSICA SCRIPTA, 2021, 96 (05)
  • [2] Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation
    Zhou, Yuan
    Manukure, Solomon
    McAnally, Morgan
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [3] The lump, lump off and rogue wave solutions of a (2+1)-dimensional breaking soliton equation
    Chen, Yiren
    Yu, Zong-Bing
    Zou, Li
    NONLINEAR DYNAMICS, 2023, 111 (01) : 591 - 602
  • [4] M-breather, M-lump, breather molecules and their interaction solutions for a (2+1)-dimensional KdV equation
    Cui, Y. P.
    Wang, L.
    Gegen, Hasi
    PHYSICA SCRIPTA, 2021, 96 (09)
  • [5] Breather Wave and Traveling Wave Solutions for A (2+1)-Dimensional KdV4 Equation
    Tao, Sixing
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [6] Deformation rogue wave to the (2+1)-dimensional KdV equation
    Xiaoen Zhang
    Yong Chen
    Nonlinear Dynamics, 2017, 90 : 755 - 763
  • [7] Deformation rogue wave to the (2+1)-dimensional KdV equation
    Zhang, Xiaoen
    Chen, Yong
    NONLINEAR DYNAMICS, 2017, 90 (02) : 755 - 763
  • [8] A study of lump and line rogue wave solutions to a (2+1)-dimensional nonlinear equation
    Manukure, Solomon
    Zhou, Yuan
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [9] Dynamics of Lump, Breather, Two-Waves and Other Interaction Solutions of (2+1)-Dimensional KdV Equation
    Jannat N.
    Raza N.
    Kaplan M.
    Akbulut A.
    International Journal of Applied and Computational Mathematics, 2023, 9 (6)
  • [10] Multiwave, rogue wave, periodic wave, periodic cross-lump wave, periodic cross-kink wave, lump soliton, breather lump, homoclinic breather, periodic cross-kink, M-shaped rational solutions and their interactions for the Degasperis-Procesi equation
    Seaway, Aly R.
    Rizvi, Syed T. R.
    Ahmad, Ahtsham
    Ahmed, Sarfaraz
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (18):