YOLO-Parallel: Positive Gradient Modeling for Long-Tail Remote Sensing Object Detection

被引:1
|
作者
Gao, Xiangyi [1 ]
Zhao, Danpei [1 ,2 ]
Yuan, Zhichao [1 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Tianmushan Lab, Hangzhou 311115, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-tail loss; object detection; one-stage detectors; remote sensing images (RSIs);
D O I
10.1109/LGRS.2024.3397885
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The long-tail distribution problem is widely prevalent in remote sensing images (RSIs), posing significant challenges to object detection tasks. Most existing methods for long-tail detection are designed for two-stage models. Such approaches of suppressing negative gradients tend to increase false alarms in one-stage detectors, resulting in a decline in overall performance and an increase in postprocessing time. This letter presents a novel long-tail loss with broad applicability in diverse you only look once (YOLO) networks. We present a novel positive gradient loss (PGLoss) that effectively enhances the accuracy of tail categories while preserving the accuracy of head categories. Furthermore, to address the performance degradation caused by the pseudo-residual structure, we create parallel block with efficient computation and superior feature extraction abilities. We designed and trained the network named you only look once (YOLO)-Parallel to verify the effectiveness of PGLoss and parallel block. Extensive experiments were conducted on two large-scale optical remote sensing datasets, DIOR and DOTA, which are severely affected by the long-tail problem. The results powerfully demonstrate the superiority of our algorithm. YOLO-Parallel, with only 33.3% of the parameters of YOLOX, achieved a comparable detection performance of 96.9% on DIOR. On the DOTA dataset, PGLoss achieved mean average precision (mAP) improvements of around 1.5% for YOLO-Parallel, YOLOv5n, and YOLOv7-tiny without increasing NMS processing time.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Logit Normalization for Long-Tail Object Detection
    Zhao, Liang
    Teng, Yao
    Wang, Limin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (06) : 2114 - 2134
  • [2] Adaptive Class Suppression Loss for Long-Tail Object Detection
    Wang, Tong
    Zhu, Yousong
    Zhao, Chaoyang
    Zeng, Wei
    Wang, Jinqiao
    Tang, Ming
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3102 - 3111
  • [3] YOLO-Remote: An Object Detection Algorithm for Remote Sensing Targets
    Fan, Kaizhe
    Li, Qian
    Li, Quanjun
    Zhong, Guangqi
    Chu, Yue
    Le, Zhen
    Xu, Yeling
    Li, Jianfeng
    IEEE ACCESS, 2024, 12 : 155654 - 155665
  • [4] Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution
    Ouyang, Wanli
    Wang, Xiaogang
    Zhang, Cong
    Yang, Xiaokang
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 864 - 873
  • [5] Distance metric-based learning for long-tail object detection
    Shao, Mingwen
    Peng, Zilu
    IMAGE AND VISION COMPUTING, 2024, 142
  • [6] A dual-balanced network for long-tail distribution object detection
    Gong, Huiyun
    Li, Yeguang
    Dong, Jian
    IET COMPUTER VISION, 2023, 17 (05) : 565 - 575
  • [7] Transfer Learning for Object Detection in Remote Sensing Images with YOLO
    Devi, A.
    Reddy, K. Venkateswara
    Bangare, Sunil L.
    Pande, Deepti S.
    Balaji, S. R.
    Badhoutiya, Arti
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 980 - 989
  • [8] Remote sensing object detection based on YOLO and embedded systems
    Lin Yu
    Dong Zhenghong
    Xia Lurui
    Wang Junwei
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [9] Margin and Average Precision Loss Calibration for Long-Tail Object Detection
    Ye, Yanli
    Zhang, Tiankui
    Lu, Ruifang
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 26 - 32
  • [10] Rotating-YOLO: A novel YOLO model for remote sensing rotating object detection
    Liu, Zhiguo
    Chen, Yuqi
    Gao, Yuan
    IMAGE AND VISION COMPUTING, 2025, 154