Multi-Swin Transformer Based Spatio-Temporal Information Exploration for Compressed Video Quality Enhancement

被引:0
|
作者
Yu, Li [1 ,2 ]
Wu, Shiyu [3 ]
Gabbouj, Moncef [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 211544, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 211544, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Software, Nanjing 211544, Peoples R China
[4] Tampere Univ, Dept Comp Sci, Tampere 33100, Finland
基金
中国国家自然科学基金;
关键词
Transformers; Convolution; Video recording; Quality assessment; Motion compensation; Feature extraction; Correlation; Compressed video quality enhancement; spatio-temporal information; swin transformer;
D O I
10.1109/LSP.2024.3429008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spatio-temporal information plays an important role in compressed video quality enhancement. Most advanced studies use deformable convolution or Swin transformer to explore spatio-temporal information. However, deformable convolution based methods may incur inaccurate motion compensation due to the compression artifacts and limited receptive fields. The Swin transformer based approaches are unable to fully explore the spatio-temporal information, limited by its rigid window-based mechanism. To solve the above problems, we propose a novel multi-Swin transformer-based network for compressed video quality enhancement to better explore spatio-temporal information. The whole workflow consists of the Local Alignment (LA) Module, the Global Refinement Fusion (GRF) Module, and the Quality Enhancement (QE) Module. The LA module roughly perceives the local motion through the deformable fusion. Subsequently, the GRF module employs the proposed multi-Swin transformer to enhance the spatio-temporal perception. Finally, the QE module effectively restores the texture details across various scales. Extensive experimental results prove the effectiveness of the proposed method.
引用
收藏
页码:1880 / 1884
页数:5
相关论文
共 50 条
  • [1] Multi-Frame Compressed Video Quality Enhancement by Spatio-Temporal Information Balance
    Wang, Zeyang
    Ye, Mao
    Li, Shuai
    Li, Xue
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 105 - 109
  • [2] Spatio-Temporal Detail Information Retrieval for Compressed Video Quality Enhancement
    Luo, Dengyan
    Ye, Mao
    Li, Shuai
    Zhu, Ce
    Li, Xue
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6808 - 6820
  • [3] Spatio-Temporal Information Fusion Network for Compressed Video Quality Enhancement
    Huang, Weiwei
    Jia, Kebin
    Liu, Pengyu
    Yu, Yuan
    2023 DATA COMPRESSION CONFERENCE, DCC, 2023, : 343 - 343
  • [4] Spatio-Temporal Deformable Convolution for Compressed Video Quality Enhancement
    Deng, Jianing
    Wang, Li
    Pu, Shiliang
    Zhuo, Cheng
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10696 - 10703
  • [5] Coarse-to-Fine Spatio-Temporal Information Fusion for Compressed Video Quality Enhancement
    Luo, Dengyan
    Ye, Mao
    Li, Shuai
    Li, Xue
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 543 - 547
  • [6] Spatio-Temporal Adaptive Weighted Fusion Network for Compressed Video Quality Enhancement
    Zhang, Tingrong
    He, Xiaohai
    Teng, Qizhi
    Cheng, Junxiong
    Ren, Chao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (12) : 5064 - 5068
  • [7] Spatio-temporal enhancement method based on dense connection structure for compressed video
    Li, Hongyao
    He, Xiaohai
    Bi, Xiaodong
    Xiong, Shuhua
    Chen, Honggang
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)
  • [8] Multi-Codec Video Quality Enhancement Model Based on Spatio-Temporal Deformable Fusion
    Kreisler, Gilberto
    da Silveira Junior, Garibaldi
    Zatt, Bruno
    Palomino, Daniel
    Correa, Guilherme
    15TH IEEE LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS, LASCAS 2024, 2024, : 163 - 167
  • [9] Novel Spatio-Temporal Structural Information Based Video Quality Metric
    Wang, Yue
    Jiang, Tingting
    Ma, Siwei
    Gao, Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2012, 22 (07) : 989 - 998
  • [10] Video Quality Assessment Metric Based on Spatio-Temporal Motion Information
    Kang, Kai
    Liu, Xingang
    Sun, Chao
    2013 IEEE 11TH INTERNATIONAL CONFERENCE ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING (DASC), 2013, : 47 - 51