Powder contamination during laser powder bed fusion: Inconel 718 in Ti6Al4V

被引:0
|
作者
Groden, Cory [1 ]
Traxel, Kellen D. [1 ]
Bandyopadhyay, Amit [1 ]
机构
[1] Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
Laser powder bed fusion; Additive manufacturing; Inconel; 718; Ti6Al4V; Defects; Mechanical properties;
D O I
10.1016/j.matlet.2024.136465
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Powder contamination during laser powder bed fusion is a critical concern for the quality assurance of parts. Herein, we studied the effect of Inconel 718 contamination on the properties of printed Ti6Al4V, two commonly printed alloys. Contaminated parts exhibited visual and microstructural defects, and a mere 0.5 wt% IN718 contamination resulted in a 43 % reduction in plastic strain without noticing surface -level cracking. Further contamination of 2.5 wt% IN718 promotes surface cracking that renders the material unable to deform plastically, highlighting the importance of proper powder handling and the detrimental effects that even small amounts of contaminants can have on AM -produced components.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Plasma Spheroidisation of Irregular Ti6Al4V Powder for Powder Bed Fusion
    Nkhasi, Nthateng
    du Preez, Willie
    Bissett, Hertzog
    METALS, 2021, 11 (11)
  • [2] A Review of the Fatigue Behaviour of Laser Powder Bed Fusion Ti6Al4V
    Moloi, Tumelo
    Dzogbewu, Thywill Cephas
    Maringa, Maina
    Muiruri, Amos
    METALLURGICAL & MATERIALS ENGINEERING, 2025, 31 (01) : 288 - 310
  • [3] Laser powder bed fusion of Ti6Al4V lattice structures and their applications
    Dzogbewu, Thywill Cephas
    JOURNAL OF METALS MATERIALS AND MINERALS, 2020, 30 (04): : 68 - 78
  • [4] Reuse of Grade 23 Ti6Al4V Powder during the Laser-Based Powder Bed Fusion Process
    Harkin, Ryan
    Wu, Hao
    Nikam, Sagar
    Quinn, Justin
    McFadden, Shaun
    METALS, 2020, 10 (12) : 1 - 14
  • [5] In situ monitoring the effects of Ti6Al4V powder oxidation during laser powder bed fusion additive manufacturing
    Soundarapandiyan, Gowtham
    Leung, Chu Lun Alex
    Johnston, Carol
    Chen, Bo
    Khan, Raja H. U.
    McNutt, Phil
    Bhatt, Alisha
    Atwood, Robert C.
    Lee, Peter D.
    Fitzpatrick, Michael E.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2023, 190
  • [6] Exploring the feasibility of preparing Ti/Ti6Al4V composites by laser powder bed fusion
    Shen, J.
    Pan, Z.
    Nadimpalli, V. K.
    Yu, T.
    44TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, RISO 2024, 2024, 1310
  • [7] Optimisation of the laser polishing for laser-powder bed fusion and electron beam-powder bed fusion Ti6Al4V surfaces
    El Hassanin, Andrea
    Manco, Emanuele
    Squillace, Antonino
    Obeidi, Muhannad Ahmed
    SURFACE & COATINGS TECHNOLOGY, 2024, 485
  • [8] Microstructure and Corrosion Resistance of Ti6Al4V Manufactured by Laser Powder Bed Fusion
    Luo, Yiwa
    Wang, Mingyong
    Zhu, Jun
    Tu, Jiguo
    Jiao, Shuqiang
    METALS, 2023, 13 (03)
  • [9] SURFACE ROUGHNESS OF Ti6Al4V ALLOY PRODUCED BY LASER POWDER BED FUSION
    Liovic, David
    Franulovic, Marina
    Ferlic, Luka
    Gubeljak, Nenad
    FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2024, 22 (01) : 63 - 76
  • [10] The Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V Powder
    Memu, Firat
    Durlu, Nuri
    Yagmur, Aydin
    JOM, 2025,