Interpreting Machine Learning Models for Survival Analysis: A Study of Cutaneous Melanoma Using the SEER Database

被引:0
|
作者
Hernandez-Perez, Carlos [1 ]
Pachon-Garcia, Cristian [2 ]
Delicado, Pedro [2 ]
Vilaplana, Veronica [1 ]
机构
[1] Univ Politecn Catalunya Barcelona Tech UPC, Signal Theory & Commun Dept, Barcelona, Spain
[2] Univ Politecn Catalunya Barcelona Tech UPC, Dept Stat & Operat Res, Barcelona, Spain
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE AND PROCESS MINING APPLICATIONS FOR HEALTHCARE, XAI-HEALTHCARE 2023 & PM4H 2023 | 2024年 / 2020卷
关键词
Survival Analysis; Machine Learning; eXplainable Artificial Intelligence; Melanoma;
D O I
10.1007/978-3-031-54303-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we train and compare three types of machine learning algorithms for Survival Analysis: Random Survival Forest, DeepSurv and DeepHit, using the SEER database to model cutaneous malignant melanoma. Additionally, we employ SurvLIMEpy library, a Python package designed to provide explainability for survival machine learning models, to analyse feature importance. The results demonstrate that machine learning algorithms outperform the Cox Proportional Hazards Model. Our work underscores the importance of explainability methods for interpreting black-box models and provides insights into important features related to melanoma prognosis.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 50 条
  • [1] Predicting Survival of Patients with Spinal Ependymoma Using Machine Learning Algorithms with the SEER Database
    Ryu, Sung Mo
    Lee, Sun-Ho
    Kim, Eun-Sang
    Eoh, Whan
    WORLD NEUROSURGERY, 2019, 124 : E331 - E339
  • [2] Survival prediction in second primary breast cancer patients with machine learning: An analysis of SEER database
    Wu, Yafei
    Zhang, Yaheng
    Duan, Siyu
    Gu, Chenming
    Wei, Chongtao
    Fang, Ya
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 254
  • [3] Cutaneous Leiomyosarcoma: A SEER Database Analysis
    Sandhu, Neelam
    Sauvageau, Andrew P.
    Groman, Adrienne
    Bogner, Paul N.
    DERMATOLOGIC SURGERY, 2020, 46 (02) : 159 - 164
  • [4] Association of Sentinel Lymph Node Biopsy With Survival for Head and Neck Melanoma Survival Analysis Using the SEER Database
    Sperry, Steven M.
    Charlton, Mary E.
    Pagedar, Nitin A.
    JAMA OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2014, 140 (12) : 1101 - 1109
  • [5] Comparison of disease-specific survival in penile melanoma versus other cutaneous sites: a SEER national database study
    Choe, Sharon I.
    Taylor, Mitchell A.
    Griffin, Julia B.
    Silberstein, Peter T.
    INTERNATIONAL JOURNAL OF DERMATOLOGY, 2024, 63 (10) : e284 - e286
  • [6] Impact of socioeconomic and sociodemographic factors on cutaneous melanoma: a SEER analysis of survival outcomes
    Dhillon, S.
    Farley, V.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (08) : S176 - S176
  • [7] Predicting distant metastasis of bladder cancer using multiple machine learning models: a study based on the SEER database with external validation
    Zou, Xin Chang
    Rao, Xue Peng
    Huang, Jian Biao
    Zhou, Jie
    Chao, Hai Chao
    Zeng, Tao
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [8] Prognostic Factors, Treatment, and Survival in Primary Cutaneous Mucinous Carcinoma: A SEER Database Analysis
    Rismiller, Kyle P.
    Crowe, David R.
    Knackstedt, Thomas J.
    DERMATOLOGIC SURGERY, 2020, 46 (09) : 1141 - 1147
  • [9] Explainable machine learning predicts survival of retroperitoneal liposarcoma: A study based on the SEER database and external validation in China
    Wang, Maoyu
    Li, Zhizhou
    Zeng, Shuxiong
    Wang, Ziwei
    Ying, Yidie
    He, Wei
    Zhang, Zhensheng
    Wang, Huiqing
    Xu, Chuanliang
    CANCER MEDICINE, 2024, 13 (11):
  • [10] Pediatric melanoma: Risk factor and survival analysis of the SEER Cancer Registry database.
    Strouse, JJ
    Fears, T
    Tucker, MA
    Wayne, AS
    JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (14) : 724S - 724S