Analysis of Gas Metal Arc Welding Process Using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

被引:0
|
作者
Kumar, Vikas [1 ]
Parida, Manoj K. [1 ]
Albert, Shaju K. [2 ]
机构
[1] Kalinga Inst Ind Technol, Sch Elect Engn, Bhubaneswar 751024, India
[2] Indira Gandhi Ctr Atom Res, Mat Engn Grp, DAE, Kalpakkam 603102, India
关键词
GMAW; High-speed data acquisition; Signal decomposition; Metal transfer; Depth of penetration; FEATURE-EXTRACTION; DEFECT DETECTION; FAULT-DIAGNOSIS; EMD;
D O I
10.1007/s12666-024-03367-z
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The gas metal arc welding (GMAW) process, prevalent in construction and fabrication sectors, traditionally relies on postproduction evaluations, which are both costly and time-consuming. This study proposes a more efficient, real-time monitoring approach utilizing high-speed data acquisition and analysis systems to record and scrutinize voltage and current fluctuations during welding. Various decomposition techniques, including EMD (empirical mode decomposition), EEMD (ensemble empirical mode decomposition with noise), CEEMDAN (complete ensemble empirical mode decomposition with adaptive noise), and ICEEMDAN (improved complete ensemble empirical mode decomposition with adaptive noise), were analyzed to assess arc variations and thereby evaluate GMAW process quality. The research identified an optimal technique for analyzing non-stationary welding signals, further applied to real-time signals using decomposition and time-frequency representation (TFR) techniques. Findings indicate that key GMAW parameters, such as metal transfer mode and penetration depth, correlate significantly with the intrinsic mode functions (IMFs) and TFRs of decomposed signals. The study suggests that the introduced techniques can effectively analyze the influence of different shielding gases and arc currents on the GMAW process, presenting a promising method for real-time GMAW process monitoring.
引用
收藏
页码:3279 / 3291
页数:13
相关论文
共 50 条
  • [1] A COMPLETE ENSEMBLE EMPIRICAL MODE DECOMPOSITION WITH ADAPTIVE NOISE
    Torres, Maria E.
    Colominas, Marcelo A.
    Schlotthauer, Gaston
    Flandrin, Patrick
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4144 - 4147
  • [2] An Improved FxLMS Method Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
    Xie, Xihai
    Wang, Yaohui
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 747 - 752
  • [3] Decomposition of machining error for surfaces using complete ensemble empirical mode decomposition with adaptive noise
    Chen, Yueping
    Xu, Jiahe
    Tang, Qingchun
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2021, 34 (10) : 1049 - 1066
  • [4] Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise
    Hassan, Ahnaf Rashik
    Subasi, Abdulhamit
    Zhang, Yanchun
    KNOWLEDGE-BASED SYSTEMS, 2020, 191 (191)
  • [5] Denoising the hob vibration signal using improved complete ensemble empirical mode decomposition with adaptive noise and noise quantization strategies
    Zhou, Han
    Yan, Ping
    Yuan, Yanfei
    Wu, Dayuan
    Huang, Qin
    ISA TRANSACTIONS, 2022, 131 : 715 - 735
  • [6] Decay Ratio estimation in BWRs based on the improved complete ensemble empirical mode decomposition with adaptive noise
    Alejandro Olvera-Guerrero, Omar
    Prieto-Guerrero, Alfonso
    Espinosa-Paredes, Gilberto
    ANNALS OF NUCLEAR ENERGY, 2017, 102 : 280 - 296
  • [7] Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise and Its Application in Noise Reduction for Fiber Optic Sensing
    Pan, Zhen
    Xu, Biao
    Chen, Wenjia
    Fan, Dian
    Meng, Xianghan
    Peng, Mengfan
    Zhou, Ciming
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2025, 43 (05) : 2466 - 2474
  • [8] Stability evaluation of short-circuiting gas metal arc welding based on ensemble empirical mode decomposition
    Huang, Yong
    Wang, Kehong
    Zhou, Zhilan
    Zhou, Xiaoxiao
    Fang, Jimi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (03)
  • [9] Series arc fault identification based on complete ensemble empirical mode decomposition with adaptive noise and convolutional neural network
    Shang T.
    Wang W.
    Peng J.
    Xu B.
    Gao H.
    Zhai G.
    International Journal of Metrology and Quality Engineering, 2022, 13
  • [10] A Combined Noise Reduction Method for Floodgate Vibration Signals Based on Adaptive Singular Value Decomposition and Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
    Wang, Wentao
    Zhu, Huiqi
    Cheng, Yingxin
    Tang, Yiyuan
    Liu, Bo
    Li, Huokun
    Yang, Fan
    Zhang, Wenyuan
    Huang, Wei
    Zheng, Fang
    WATER, 2023, 15 (24)