Gelatin (GEL), pectin (PEC), carboxymethyl cellulose (CMC), and whey protein isolate (WPI) were employed to formulate hydrogels for stabilizing N-Acetylneuraminic Acid (NeuAc). GEL/WPI-NeuAc hydrogels, irrespective of the ratio, exhibited a flexible and smooth surface with a continuous three-dimensional network structure internally. Porosity of the three types of hydrogels increased from 3.69% to 86.92% (GEL/WPI), 41.67% (PEC/ WPI), and 87.62% (CMC/WPI), rendering them suitable as carriers for NeuAc encapsulation. The dynamic swelling behavior of all hydrogels followed Schott's second-order kinetics model. The degradation performance of GEL, PEC, and CMC/WPI-NeuAc hydrogels was optimal at a 5: 5 ratio, with degradation rates of 80.39 +/- 1.26%, 82.38 +/- 1.96%, and 81.39 +/- 1.57%, respectively. GEL, PEC, CMC/WPI-NeuAc hydrogels demonstrated decreased release rates of 44.56%, 31.04%, and 41.26%, respectively, compared to free NeuAc, post gastric digestion. The present investigation suggests the potential of GEL/WPI hydrogels as effective carriers for delivering NeuAc encapsulation.