VAE-GNA: a variational autoencoder with Gaussian neurons in the latent space and attention mechanisms

被引:2
|
作者
Rocha, Matheus B. [1 ,2 ]
Krohling, Renato A. [1 ,2 ]
机构
[1] Univ Fed Espirito Santo, Labcin Nat Inspired Comp Lab, BR-29075910 Vitoria, Brazil
[2] Univ Fed Espirito Santo, Grad Program Comp Sci, BR-29075910 Vitoria, Brazil
关键词
Variational autoencoder (VAE); Gaussian neurons; Attention layer; Skin lesions; Near-infrared (NIR) spectroscopy; Cancer detection; SPECTROSCOPY; CANCER;
D O I
10.1007/s10115-024-02169-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders (VAEs) are generative models known for learning compact and continuous latent representations of data. While they have proven effective in various applications, using latent representations for classification tasks presents challenges. Typically, a straightforward approach involves concatenating the mean and variance vectors and inputting them into a shallow neural network. In this paper, we introduce a novel approach for variational autoencoders, named VAE-GNA, which integrates Gaussian neurons into the latent space along with attention mechanisms. These neurons directly process mean and variance values through a suitable modified sigmoid function, not only improving classification, but also optimizing the training of the VAE in extracting features, in synergy with the classification network. Additionally, we investigate both additive and multiplicative attention mechanisms to enhance the model's capabilities. We applied the proposed method to automatic cancer detection using near-infrared (NIR) spectral data, showing that the experimental results of VAE-GNA surpass established baselines for spectral datasets. The results obtained indicate the feasibility and effectiveness of our approach.
引用
收藏
页码:6415 / 6437
页数:23
相关论文
共 37 条
  • [1] GLSR-VAE: Geodesic Latent Space Regularization for Variational AutoEncoder Architectures
    Hadjeres, Gaetan
    Nielsen, Frank
    Pachet, Francois
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3013 - 3019
  • [2] Latent Space Expanded Variational Autoencoder for Sentence Generation
    Song, Tianbao
    Sun, Jingbo
    Chen, Bo
    Peng, Weiming
    Song, Jihua
    IEEE ACCESS, 2019, 7 : 144618 - 144627
  • [3] Customization of latent space in semi-supervised Variational AutoEncoder
    An, Seunghwan
    Jeon, Jong-June
    PATTERN RECOGNITION LETTERS, 2024, 177 : 54 - 60
  • [4] Unsupervised White Blood Cell characterization in the latent space of a Variational Autoencoder
    Tarquino, Jonathan
    Romero, Eduardo
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [5] Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling
    Mansoor, Sanaa
    Baek, Minkyung
    Park, Hahnbeom
    Lee, Gyu Rie
    Baker, David
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (07) : 2689 - 2695
  • [6] Multi-Channel Multi-Scale Convolution Attention Variational Autoencoder (MCA-VAE): An Interpretable Anomaly Detection Algorithm Based on Variational Autoencoder
    Liu, Jingwen
    Huang, Yuchen
    Wu, Dizhi
    Yang, Yuchen
    Chen, Yanru
    Chen, Liangyin
    Zhang, Yuanyuan
    SENSORS, 2024, 24 (16)
  • [7] Variational Autoencoder-Based Vehicle Trajectory Prediction with an Interpretable Latent Space
    Neumeier, Marion
    Tollkuhn, Andreas
    Berberich, Thomas
    Botsch, Michael
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 820 - 827
  • [8] An Exploration of the Latent Space of a Convolutional Variational Autoencoder for the Generation of Musical Instrument Tones
    Natsiou, Anastasia
    O'Leary, Sean
    Longo, Luca
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 470 - 486
  • [9] Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder
    Andrianomena, Sambatra
    Tang, Hongming
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (06):
  • [10] Multi-Representation Variational Autoencoder via Iterative Latent Attention and Implicit Differentiation
    Tran, Nhu-Thuat
    Lauw, Hady W.
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2462 - 2471