Short-Term Electricity Demand Forecasting for DanceSport Activities

被引:0
|
作者
Liu, Keyin [1 ]
Li, Hao [2 ]
Yang, Song [3 ,4 ]
机构
[1] Chengdu Sports Univ, Chengdu 610041, Sichuan, Peoples R China
[2] Sichuan Univ SCU, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] Huawei Technol Co Ltd, Shenzhen 518057, Peoples R China
[4] Chongqing Univ Posts & Telecommun, Chongqing 400065, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Predictive models; Load modeling; Feature extraction; Transformers; Graph neural networks; Humanities; Demand forecasting; Electricity supply industry; Short-term demand forecasting; graph neural networks; DanceSport; hybrid fusion; ARMA MODEL;
D O I
10.1109/ACCESS.2024.3424688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel hybrid deep learning-based approach for short-term electricity demand forecasting in dance sport activities. Traditional deep learning methods often overlook important spatial dependencies and key features like trend and seasonal patterns. To address these limitations, we propose a model that combines Transformer for temporal feature extraction and Graph Neural Networks for spatial feature extraction, enabling prediction based on spatial-temporal features. Additionally, we employ the decomposition techniques to extract seasonal and trend features from dance sports data. By integrating early fusion (feature-level fusion) and late fusion (score-level fusion) strategies, our model achieves superior performance, outperforming baseline methods by over 4% on benchmark datasets. Additionally, we conduct the ablation study to comprehensively analyze the impact of each module on prediction accuracy, providing valuable insights into the contribution of spatial, temporal, seasonal and trend features to the overall forecasting performance.
引用
收藏
页码:99508 / 99516
页数:9
相关论文
共 50 条
  • [1] ANALYSIS AND SHORT-TERM FORECASTING OF ELECTRICITY DEMAND
    BOROS, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05): : T340 - T342
  • [2] Heterogeneous Ensembles for Short-Term Electricity Demand Forecasting
    Dudek, Grzegorz
    2016 17TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING (EPE), 2016, : 21 - 26
  • [3] SHORT-TERM FORECASTING OF ELECTRICITY DEMAND BY DECOMPOSITION ANALYSIS
    GOH, TN
    CHOI, SS
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1984, 17 (01) : 79 - 84
  • [4] A Hybrid Model for Forecasting Short-Term Electricity Demand
    Athanasopoulou, Maria Eleni
    Deveikyte, Justina
    Mosca, Alan
    Peri, Ilaria
    Provetti, Alessandro
    ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [5] Functional Data Approach for Short-Term Electricity Demand Forecasting
    Shah, Ismail
    Jan, Faheem
    Ali, Sajid
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [6] Short-Term Electricity Demand Forecasting Based on Multiple LSTMs
    Yong, Binbin
    Shen, Zebang
    Wei, Yongqiang
    Shen, Jun
    Zhou, Qingguo
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, 2020, 11691 : 192 - 200
  • [7] Performance Analysis of Short-term Electricity Demand Forecasting for Thailand
    Chapagain, Kamal
    Kittipiyakul, Somsak
    Kulthanavit, Pisut
    2019 34TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2019), 2019, : 116 - 119
  • [8] Functional Data Approach for Short-Term Electricity Demand Forecasting
    Shah, Ismail
    Jan, Faheem
    Ali, Sajid
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [9] Triple seasonal methods for short-term electricity demand forecasting
    Taylor, James W.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 204 (01) : 139 - 152
  • [10] Stacked ensemble methods for short-term electricity demand forecasting
    Foster, Judith
    McLoone, Sean
    IFAC PAPERSONLINE, 2023, 56 (02): : 3100 - 3105