Traffic Graph Convolutional Network with Residual Connection for Accident Severity Prediction

被引:0
|
作者
Zhang, Ke [1 ]
Li, Meng [1 ]
Liu, Qingquan [1 ]
Guo, Yaming [1 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Urban traffic accidents have seriously affected people's life and property. The characteristics of road structure have direct impacts on the severity of traffic accidents, while traditional machine learning algorithms are difficult to take into account the complex road network structure. Therefore, research on an effective method to extract deep information within the road network is necessary. This paper proposes a traffic graph convolutional network with residual connection (ResTGC), which can deepen the structure of the neural network and effectively extract vital information through residual connection. By evaluating a data set collected from Oklahoma City, the proposed ResTGC outperforms a series of machine learning algorithms, such as SVM, GBDT, Adaboost, GCN, and GraphSAGE, with an improvement of over 6.1%. The remarkable classification ability can effectively identify the risk degree of various road network structures, which can provide a vital reference for the vehicle routing problem, municipal planning, and so on.
引用
收藏
页码:1569 / 1578
页数:10
相关论文
共 50 条
  • [1] Deep spatio-temporal graph convolutional network for traffic accident prediction
    Yu, Le
    Du, Bowen
    Hu, Xiao
    Sun, Leilei
    Han, Liangzhe
    Lv, Weifeng
    NEUROCOMPUTING, 2021, 423 (423) : 135 - 147
  • [2] Bayesian graph convolutional network for traffic prediction
    Fu, Jun
    Zhou, Wei
    Chen, Zhibo
    NEUROCOMPUTING, 2024, 582
  • [3] Traffic Matrix Prediction in SDN based on Spatial-Temporal Residual Graph Convolutional Network
    Wang, Xintong
    Sun, Yibo
    Wang, Xuan
    Wang, Enliang
    Sun, Zhixin
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3382 - 3387
  • [4] A Model of Traffic Accident Prediction Based on Convolutional Neural Network
    Lu Wenqi
    Luo Dongyu
    Yan Menghua
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2017, : 198 - 202
  • [5] Severity Prediction of Traffic Accident Using an Artificial Neural Network
    Alkheder, Sharaf
    Taamneh, Madhar
    Taamneh, Salah
    JOURNAL OF FORECASTING, 2017, 36 (01) : 100 - 108
  • [6] Cellular Network Traffic Prediction with Hybrid Graph Convolutional Recurrent Network
    Zhang, Miaoru
    Zhou, Hao
    Yu, Ke
    Wu, Xiaofei
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (03) : 1867 - 1892
  • [7] Cellular Network Traffic Prediction with Hybrid Graph Convolutional Recurrent Network
    Zhang, Miaoru
    Zhou, Hao
    Yu, Ke
    Wu, Xiaofei
    Wireless Personal Communications, 138 (03): : 1867 - 1892
  • [8] Spatio-Temporal Residual Graph Convolutional Network for Short-Term Traffic Flow Prediction
    Zhang, Qingyong
    Tan, Meifang
    Li, Changwu
    Xia, Huiwen
    Chang, Wanfeng
    Li, Minglong
    IEEE ACCESS, 2023, 11 : 84187 - 84199
  • [9] Multi-dynamic residual graph convolutional network with global feature enhancement for traffic flow prediction
    Li, Xiangdong
    Yin, Xiang
    Huang, Xiaoling
    Liu, Weishu
    Zhang, Shuai
    Zhang, Dongping
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (02) : 873 - 889
  • [10] A Graph Convolutional Method for Traffic Flow Prediction in Highway Network
    Zhang, Tianpu
    Ding, Weilong
    Chen, Tao
    Wang, Zhe
    Chen, Jun
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021