A New Class of L2-Stable Schemes for the Isentropic Euler Equations on Staggered Grids

被引:0
|
作者
Ndjinga, Michael [1 ]
Ait-Ameur, Katia [1 ,2 ]
机构
[1] Univ Paris Saclay, CEA Saclay, DEN DM2S STMF, F-91191 Gif Sur Yvette, France
[2] Sorbonne Univ, LJLL, F-75005 Paris, France
关键词
Euler equations; Compressible flows; Finite volumes; Staggered grids; Stability analysis; Numerical diffusion;
D O I
10.1007/978-3-030-43651-3_39
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Staggered schemes for compressible flows are highly non linear and the stability analysis has historically been performed with a heuristic approach and the tuning of numerical parameters [12]. We investigate the L-2-stability of staggered schemes by analysing their numerical diffusion operator. The analysis of the numerical diffusion operator gives new insight into the scheme and is a step towards a proof of linear stability or stability for almost constant initial data. For most classical staggered schemes [9-11, 14], we are able to prove the positivity of the numerical diffusion only in specific cases (constant sign velocities). We then propose a class of linearly L-2-stable staggered schemes for the isentropic Euler equations based on a carefully chosen numerical diffusion operator. We give an example of such a scheme and present some first numerical results on a Riemann problem.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 50 条
  • [1] A Class of Staggered Schemes for the Compressible Euler Equations
    Herbin, Raphaele
    Latche, Jean-Claude
    NUMERICAL METHODS AND APPLICATIONS, NMA 2018, 2019, 11189 : 15 - 26
  • [2] CONSISTENT SEGREGATED STAGGERED SCHEMES WITH EXPLICIT STEPS FOR THE ISENTROPIC AND FULL EULER EQUATIONS
    Herbin, Raphaele
    Latche, Jean-Claude
    Trung Tan Nguyen
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 893 - 944
  • [3] A New Stable Splitting for the Isentropic Euler Equations
    Kaiser, Klaus
    Schutz, Jochen
    Schoebel, Ruth
    Noelle, Sebastian
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (03) : 1390 - 1407
  • [4] A New Stable Splitting for the Isentropic Euler Equations
    Klaus Kaiser
    Jochen Schütz
    Ruth Schöbel
    Sebastian Noelle
    Journal of Scientific Computing, 2017, 70 : 1390 - 1407
  • [5] High order accurate schemes for Euler and Navier?Stokes equations on staggered Cartesian grids
    Lespagnol, Fabien
    Dakin, Gautier
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 410
  • [6] High order accurate schemes for Euler and Navier–Stokes equations on staggered Cartesian grids
    Lespagnol F.
    Dakin G.
    Journal of Computational Physics, 2020, 410
  • [7] A CLASS OF BIDIAGONAL SCHEMES FOR SOLVING THE EULER EQUATIONS
    CASIER, F
    DECONINCK, H
    HIRSCH, C
    AIAA JOURNAL, 1984, 22 (11) : 1556 - 1563
  • [8] KINETIC SCHEMES ON STAGGERED GRIDS FOR BAROTROPIC EULER MODELS: ENTROPY-STABILITY ANALYSIS
    Berthelin, Florent
    Goudon, Thierry
    Minjeaud, Sebastian
    MATHEMATICS OF COMPUTATION, 2015, 84 (295) : 2221 - 2262
  • [9] An explicit well-balanced scheme on staggered grids for barotropic Euler equations
    Goudon, Thierry
    Minjeaud, Sebastian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (04) : 1263 - 1299
  • [10] VARIATIONAL PARTICLE SCHEMES FOR THE POROUS MEDIUM EQUATION AND FOR THE SYSTEM OF ISENTROPIC EULER EQUATIONS
    Westdickenberg, Michael
    Wilkening, Jon
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (01): : 133 - 166