Numerical Solution for the Heat Conduction Model with a Fractional Derivative and Temperature-Dependent Parameters

被引:0
|
作者
Brociek, Rafal [1 ]
Hetmaniok, Edyta [1 ]
Slota, Damian [1 ]
机构
[1] Silesian Tech Univ, Fac Appl Math, Dept Math Applicat & Methods Artificial Intelligen, PL-44100 Gliwice, Poland
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 06期
关键词
heat conduction; fractional derivative; temperature-dependent parameters; thermal symmetry; EQUATIONS;
D O I
10.3390/sym16060667
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the numerical solution of the heat conduction model with a fractional derivative of the Riemann-Liouville type with respect to the spatial variable. The considered mathematical model assumes the dependence on temperature of the material parameters (such as specific heat, density, and thermal conductivity) of the model. In the paper, the boundary conditions of the first and second types are considered. If the heat flux equal to zero is assumed on the left boundary, then the thermal symmetry is obtained, which results in a simplification of the problem and the possibility of considering only half the area. The numerical examples presented in the paper illustrate the effectiveness and convergence of the discussed computational method.
引用
收藏
页数:11
相关论文
共 50 条