Improving multiple sclerosis lesion segmentation across clinical sites: A federated learning approach with noise-resilient training

被引:1
|
作者
Bai, Lei [1 ,2 ,9 ]
Wang, Dongang [1 ,3 ]
Wang, Hengrui [3 ]
Barnett, Michael [1 ,3 ,4 ]
Cabezas, Mariano [1 ]
Cai, Weidong [1 ,5 ]
Calamante, Fernando [1 ,6 ,7 ]
Kyle, Kain [1 ,3 ]
Liu, Dongnan [1 ,5 ]
Ly, Linda [3 ]
Nguyen, Aria [3 ,10 ]
Shieh, Chun-Chien [3 ]
Sullivan, Ryan [6 ,8 ]
Zhan, Geng [1 ,3 ]
Ouyang, Wanli [2 ,10 ]
Wang, Chenyu [1 ,3 ,9 ]
机构
[1] Univ Sydney, Brain & Mind Ctr, Camperdown, NSW 2050, Australia
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[3] Sydney Neuroimaging Anal Ctr, 94 Mallett St, Sydney, NSW 2050, Australia
[4] Royal Prince Alfred Hosp, Camperdown, NSW 2050, Australia
[5] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sydney Imaging, Sydney, NSW 2006, Australia
[8] Australian Imaging Serv, Sydney, NSW 2006, Australia
[9] Shanghai AI Lab, Shanghai, Peoples R China
[10] Univ Sydney, Sch Phys, Sydney, Australia
基金
澳大利亚研究理事会;
关键词
Multiple sclerosis; Lesion segmentation; Federated learning; Noisy labels; Label correction; AUTOMATIC SEGMENTATION; ROBUST; REGISTRATION; NETWORKS; ACCURATE; IMAGES;
D O I
10.1016/j.artmed.2024.102872
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately measuring the evolution of Multiple Sclerosis (MS) with magnetic resonance imaging (MRI) critically informs understanding of disease progression and helps to direct therapeutic strategy. Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area. Obtaining sufficient data from a single clinical site is challenging and does not address the heterogeneous need for model robustness. Conversely, the collection of data from multiple sites introduces data privacy concerns and potential label noise due to varying annotation standards. To address this dilemma, we explore the use of the federated learning framework while considering label noise. Our approach enables collaboration among multiple clinical sites without compromising data privacy under a federated learning paradigm that incorporates a noise-robust training strategy based on label correction. Specifically, we introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions, enabling the correction of false annotations based on prediction confidence. We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites, enhancing the reliability of the correction process. Extensive experiments conducted on two multi-site datasets demonstrate the effectiveness and robustness of our proposed methods, indicating their potential for clinical applications in multi-site collaborations to train better deep learning models with lower cost in data collection and annotation.
引用
收藏
页数:11
相关论文
共 9 条
  • [1] Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning
    Liu, Dongnan
    Cabezas, Mariano
    Wang, Dongang
    Tang, Zihao
    Bai, Lei
    Zhan, Geng
    Luo, Yuling
    Kyle, Kain
    Ly, Linda
    Yu, James
    Shieh, Chun-Chien
    Nguyen, Aria
    Kandasamy Karuppiah, Ettikan
    Sullivan, Ryan
    Calamante, Fernando
    Barnett, Michael
    Ouyang, Wanli
    Cai, Weidong
    Wang, Chenyu
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [2] A deep learning approach for multiple sclerosis lesion segmentation
    Valverde, S.
    Cabezas, M.
    Roura, E.
    Gonzalez, S.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 531 - 532
  • [3] Lesion synthesis for extending MRI training datasets and improving automatic multiple sclerosis lesion segmentation
    Salem, M.
    Valverde, S.
    Cabezas, M.
    Pareto, D.
    Oliver, A.
    Salvi, J.
    Rovira, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 463 - 463
  • [4] An Automatic Multiple Sclerosis Lesion Segmentation Approach based on Cellular Learning Automata
    Moghadasi, Mohammad
    Fazekas, Gabor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (07) : 178 - 183
  • [5] Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach
    Valverde, Sergi
    Cabezas, Mariano
    Roura, Eloy
    Gonzalez-Villa, Sandra
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Oliver, Arnau
    Llado, Xavier
    NEUROIMAGE, 2017, 155 : 159 - 168
  • [6] Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort
    Greselin, Martina
    Lu, Po-Jui
    Melie-Garcia, Lester
    Ocampo-Pineda, Mario
    Galbusera, Riccardo
    Cagol, Alessandro
    Weigel, Matthias
    Siebenborn, Nina de Oliveira
    Ruberte, Esther
    Benkert, Pascal
    Mueller, Stefanie
    Finkener, Sebastian
    Vehoff, Jochen
    Disanto, Giulio
    Findling, Oliver
    Chan, Andrew
    Salmen, Anke
    Pot, Caroline
    Bridel, Claire
    Zecca, Chiara
    Derfuss, Tobias
    Lieb, Johanna M.
    Diepers, Michael
    Wagner, Franca
    Vargas, Maria I.
    Pasquier, Renaud Du
    Lalive, Patrice H.
    Pravata, Emanuele
    Weber, Johannes
    Gobbi, Claudio
    Leppert, David
    Kim, Olaf Chan-Hi
    Cattin, Philippe C.
    Hoepner, Robert
    Roth, Patrick
    Kappos, Ludwig
    Kuhle, Jens
    Granziera, Cristina
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [7] Validation of Fully Automated Machine-Learning Algorithm for T2 Lesion Segmentation from Clinical MRI in Multiple Sclerosis
    Feng, Jenny J.
    Nakamura, Kunio
    Hersh, Carrie
    Thoomukuntla, Bhaskar
    Ontaneda, Daniel D.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 65 - 65
  • [8] Validation of fully automated machine-learning algorithm for T2 lesion segmentation from clinical MRI in multiple sclerosis
    Feng, J. J.
    Nakamura, K.
    Hersh, C.
    Thoomukuntla, B.
    Ontaneda, D.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 268 - 269
  • [9] Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
    Ion-Margineanu, Adrian
    Kocevar, Gabriel
    Stamile, Claudio
    Sima, Diana M.
    Durand-Dubief, Francoise
    Van Huffel, Sabine
    Sappey-Marinier, Dominique
    FRONTIERS IN NEUROSCIENCE, 2017, 11