Gradient Hierarchically Porous Ionic-Junction Fibers of Wet-Spun Carboxymethyl Cellulose Coagulated with Copper Sulfate

被引:0
|
作者
Xue, Yongjun [1 ]
Zhang, Hua [1 ]
Su, Fan [1 ]
Zhang, Lu [1 ]
Lang, Gaoyuan [1 ]
Zhu, Ying [1 ]
Gu, Chengyu [1 ]
Zhou, Peng [1 ]
Zhan, Xinrui [1 ]
Liu, Dagang [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
FILMS; DERIVATIVES; HYDROGELS; ALGINATE; COMPLEXES; ALCOHOL); REMOVAL; POLYMER; PH;
D O I
10.1021/acs.biomac.4c00238
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyelectrolyte-based ionic-junction fibers newly serve as signal transmission and translation media between electronic devices and biological systems, facilitating ion transport within organic matrices. In this work, we fabricated gel filaments of carboxymethyl cellulose (CMC) chelated with Cu(II) ions through wet-spinning, using a saturated coagulant of CuSO4. Interestingly, the as-spun fibers exhibited dramatic 3D porous frameworks that varied with the temperature and precursor concentration. At 20 degrees C, the Cu(II) chelation networks favored the formation of well-organized cellular chambers or corrugated channels, displaying dense stacking patterns. However, critical transitions from cellular chambers to corrugated channels occurred at precursor dope concentrations of approximately 2 and 7 wt %, with the porous structure diminishing beyond 8 wt %. We have proposed schematic diagrams to mimic the 3D pore structure, dense porous stacking, and formation mechanism, according to electronic micrographs. Our investigations revealed that the distinct ion-junction channels or chambers are under the control of axial drawing extension as well as the outside-inside penetration of Cu(II) ions into the dope and inside-outside diffusion of water into coagulants. Therefore, controlling the metal chelation-water diffusion process at specific temperatures and concentrations will offer valuable insights for tailoring ionic-junction soft filaments with gradient hierarchically porous structures and shape memory properties.
引用
收藏
页码:4867 / 4878
页数:12
相关论文
共 3 条
  • [1] Structure and Mechanical Properties of Regenerated Cellulose Fibers Wet-Spun from Ionic Liquid/Cosolvent Systems
    Lee, Young Jae
    Lee, Sung Jun
    Jeong, Sang Won
    Kim, Hyun-chul
    Oh, Tae Hwan
    Lee, Se Geun
    FIBERS AND POLYMERS, 2019, 20 (03) : 501 - 511
  • [2] Structure and Mechanical Properties of Regenerated Cellulose Fibers Wet-Spun from Ionic Liquid/Cosolvent Systems
    Young Jae Lee
    Sung Jun Lee
    Sang Won Jeong
    Hyun-chul Kim
    Tae Hwan Oh
    Se Geun Lee
    Fibers and Polymers, 2019, 20 : 501 - 511
  • [3] Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers
    Kamal, Tahseen
    Ahmad, Ikram
    Khan, Sher Bahadar
    Asiri, Abdullah M.
    CARBOHYDRATE POLYMERS, 2017, 157 : 294 - 302