DDC3N: Doppler-Driven Convolutional 3D Network for Human Action Recognition

被引:2
|
作者
Toshpulatov, Mukhiddin [1 ]
Lee, Wookey [1 ]
Lee, Suan [2 ]
Yoon, Hoyoung [3 ]
Kang, U. Kang [3 ]
机构
[1] Inha Univ, Biomed Sci & Engn, Incheon 22212, South Korea
[2] Semyung Univ, Sch Comp Sci, Jecheon 27136, South Korea
[3] Seoul Natl Univ, Dept Comp Sci & Engn, Seoul 08826, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
3D pose estimation; discriminator; deep neural network; deep learning; generator; mesh estimation; metadata; skeleton; top-down approach; motion embedding; optical flow map; channel-wise; spatiotemporal; doppler; dataset; action recognition; 2D;
D O I
10.1109/ACCESS.2024.3422428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In deep learning (DL)-based human action recognition (HAR), considerable strides have been undertaken. Nevertheless, the precise classification of sports athletes' actions still needs to be completed. Primarily attributable to the exigency for exhaustive datasets about sports athletes' actions and the enduring quandaries imposed by variable camera perspectives, mercurial lighting conditions, and occlusions. This investigative endeavor thoroughly examines extant HAR datasets, furnishing a yardstick for gauging the efficacy of cutting-edge methodologies. In light of the paucity of accessible datasets delineating athlete actions, we have taken a proactive stance, endeavoring to curate two meticulously datasets tailored explicitly for sports athletes, subsequently scrutinizing their consequential impact on performance enhancement. While the superiority of 3D convolutional neural networks (3DCNN) over graph convolutional networks (GCN) in HAR is evident, it must be acknowledged that they entail a considerable computational overhead, particularly when confronted with voluminous datasets. Our inquiry introduces innovative methodologies and a more resource-efficient remedy for HAR, thereby alleviating the computational strain on the 3DCNN architecture. Consequently, it proffers a multifaceted approach towards augmenting HAR within the purview of surveillance cameras, bridging lacunae, surmounting computational impediments, and effectuating significant strides in the accuracy and efficacy of HAR frameworks.
引用
收藏
页码:93546 / 93567
页数:22
相关论文
共 50 条
  • [1] Human Action Recognition with 3D Convolutional Neural Network
    Lima, Tiago
    Fernandes, Bruno
    Barros, Pablo
    2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [2] Action Recognition by 3D Convolutional Network
    Brezovsky, Matus
    Sopiak, Dominik
    Oravec, Milos
    PROCEEDINGS OF ELMAR-2018: 60TH INTERNATIONAL SYMPOSIUM ELMAR-2018, 2018, : 71 - 74
  • [3] 3D Convolutional Neural Network for Action Recognition
    Zhang, Junhui
    Chen, Li
    Tian, Jing
    COMPUTER VISION, PT I, 2017, 771 : 600 - 607
  • [4] Human Action Recognition Utilizing Doppler-Enhanced Convolutional 3D Networks
    Toshpulatov, Mukhiddin
    Lee, Wookey
    Tursunbaev, Chingiz
    Lee, Suan
    2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024, 2024, : 475 - 478
  • [5] 3D Convolutional Neural Networks for Human Action Recognition
    Ji, Shuiwang
    Xu, Wei
    Yang, Ming
    Yu, Kai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 221 - 231
  • [6] Improving human action recognition with two-stream 3D convolutional neural network
    Van-Minh Khong
    Thanh-Hai Tran
    2018 1ST INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION (MAPR), 2018,
  • [7] An Improved Two-stream 3D Convolutional Neural Network for Human Action Recognition
    Chen, Jun
    Xu, Yuanping
    Zhang, Chaolong
    Xu, Zhijie
    Meng, Xiangxiang
    Wang, Jie
    2019 25TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2019, : 135 - 140
  • [8] 3D Convolutional Two-Stream Network for Action Recognition in Videos
    Li, Min
    Qi, Yuezhu
    Yang, Jian
    Zhang, Yanfang
    Ren, Junxing
    Du, Hong
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1697 - 1701
  • [9] END-TO-END LEARNING OF DEEP CONVOLUTIONAL NEURAL NETWORK FOR 3D HUMAN ACTION RECOGNITION
    Li, Chao
    Sun, Shouqian
    Min, Xin
    Lin, Wenqian
    Nie, Binling
    Zhang, Xianfu
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [10] Skeleton-Based Square Grid for Human Action Recognition With 3D Convolutional Neural Network
    Ding, Wenwen
    Ding, Chongyang
    Li, Guang
    Liu, Kai
    IEEE ACCESS, 2021, 9 : 54078 - 54089