Graph Neural Network Bandits

被引:0
|
作者
Kassraie, Parnian [1 ]
Krause, Andreas [1 ]
Bogunovic, Ilija [2 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] UCL, London, England
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the bandit optimization problem with the reward function defined over graph-structured data. This problem has important applications in molecule design and drug discovery, where the reward is naturally invariant to graph permutations. The key challenges in this setting are scaling to large domains, and to graphs with many nodes. We resolve these challenges by embedding the permutation invariance into our model. In particular, we show that graph neural networks (GNNs) can be used to estimate the reward function, assuming it resides in the Reproducing Kernel Hilbert Space of a permutation-invariant additive kernel. By establishing a novel connection between such kernels and the graph neural tangent kernel (GNTK), we introduce the first GNN confidence bound and use it to design a phased-elimination algorithm with sublinear regret. Our regret bound depends on the GNTK's maximum information gain, which we also provide a bound for. While the reward function depends on all N node features, our guarantees are independent of the number of graph nodes N. Empirically, our approach exhibits competitive performance and scales well on graph-structured domains.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Graph Neural Bandits
    Qi, Yunzhe
    Ban, Yikun
    He, Jingrui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1920 - 1931
  • [2] Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data
    Boronina, Anna
    Maksimenko, Vladimir
    Hramov, Alexander E. E.
    MATHEMATICS, 2023, 11 (11)
  • [3] Reverse Graph Learning for Graph Neural Network
    Peng, Liang
    Hu, Rongyao
    Kong, Fei
    Gan, Jiangzhang
    Mo, Yujie
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4530 - 4541
  • [4] Multi-facet Contextual Bandits: A Neural Network Perspective
    Ban, Yikun
    He, Jingrui
    Cook, Curtiss B.
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 35 - 45
  • [5] Motif Graph Neural Network
    Chen, Xuexin
    Cai, Ruichu
    Fang, Yuan
    Wu, Min
    Li, Zijian
    Hao, Zhifeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14833 - 14847
  • [6] The Graph Neural Network Model
    Scarselli, Franco
    Gori, Marco
    Tsoi, Ah Chung
    Hagenbuchner, Markus
    Monfardini, Gabriele
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (01): : 61 - 80
  • [7] Graph ensemble neural network
    Duan, Rui
    Yan, Chungang
    Wang, Junli
    Jiang, Changjun
    INFORMATION FUSION, 2024, 110
  • [8] Heterogeneous Graph Neural Network
    Zhang, Chuxu
    Song, Dongjin
    Huang, Chao
    Swami, Ananthram
    Chawla, Nitesh V.
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 793 - 803
  • [9] Curvature graph neural network
    Li, Haifeng
    Cao, Jun
    Zhu, Jiawei
    Liu, Yu
    Zhu, Qing
    Wu, Guohua
    INFORMATION SCIENCES, 2022, 592 : 50 - 66
  • [10] Survey on Graph Neural Network
    Ma S.
    Liu J.
    Zuo X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (01): : 47 - 80