Fe(II)Cl2 amendment suppresses pond methane emissions by stimulating iron-dependent anaerobic oxidation of methane

被引:1
|
作者
Struik, Quinten [1 ,5 ]
Paranaiba, Jose R. [1 ]
Glodowska, Martyna [2 ]
Kosten, Sarian [1 ]
Meulepas, Berber M. J. W. [1 ]
Rios-Miguel, Ana B. [2 ]
Jetten, Mike S. M. [2 ]
Lurling, Miquel [3 ]
Waajen, Guido [4 ]
Nijman, Thomas P. A. [1 ]
Veraart, Annelies J. [1 ]
机构
[1] Radboud Univ Nijmegen, Radboud Inst Biol & Environm Sci, Dept Ecol, NL-6525 AJ Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Radboud Inst Biol & Environm Sci, Dept Microbiol, NL-6525 AJ Nijmegen, Netherlands
[3] Wageningen Univ, Dept Environm Sci, Aquat Ecol & Water Qual Management Grp, POBox 47, NL-6700 AA Wageningen, Netherlands
[4] Water Author Brabantse Delta, NL-4836 AA Breda, Netherlands
[5] Radboud Univ Nijmegen, Radboud Inst Biol & Environm Sci, NL-6525 AJ Nijmegen, Netherlands
关键词
bioremediation; Fe-AOM; freshwater sediment; geoengineering; Methanogenesis; mitigation; FERROUS IRON; VIVIANITE FORMATION; MANAGEMENT; SEDIMENTS; SALTS;
D O I
10.1093/femsec/fiae061
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl-2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl-2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl-2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl-2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Archaea catalyze iron-dependent anaerobic oxidation of methane
    Ettwig, Katharina F.
    Zhu, Baoli
    Speth, Daan
    Keltjens, Jan T.
    Jetten, Mike S. M.
    Kartal, Boran
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (45) : 12792 - 12796
  • [2] Author Correction: Arsenic mobilization by anaerobic iron-dependent methane oxidation
    Martyna Glodowska
    Emiliano Stopelli
    Magnus Schneider
    Bhasker Rathi
    Daniel Straub
    Alex Lightfoot
    Rolf Kipfer
    Michael Berg
    Mike Jetten
    Sara Kleindienst
    Andreas Kappler
    Communications Earth & Environment, 1
  • [3] The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue
    Fleur A. E. Roland
    Alberto V. Borges
    François Darchambeau
    Marc Llirós
    Jean-Pierre Descy
    Cédric Morana
    Scientific Reports, 11
  • [4] The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue
    Roland, Fleur A. E.
    Borges, Alberto V.
    Darchambeau, Francois
    Lliros, Marc
    Descy, Jean-Pierre
    Morana, Cedric
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases
    Tucci, Frank J.
    Rosenzweig, Amy C.
    CHEMICAL REVIEWS, 2024, 124 (03) : 1288 - 1320
  • [6] Iron-dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact
    Rooze, Jurjen
    Egger, Matthias
    Tsandev, Iana
    Slomp, Caroline P.
    LIMNOLOGY AND OCEANOGRAPHY, 2016, 61 : S267 - S282
  • [7] Manganese- and Iron-Dependent Marine Methane Oxidation
    Beal, Emily J.
    House, Christopher H.
    Orphan, Victoria J.
    SCIENCE, 2009, 325 (5937) : 184 - 187
  • [8] Arsenic mobilization by anaerobic iron-dependent methane oxidation (vol 1, 42, 2020)
    Glodowska, Martyna
    Stopelli, Emiliano
    Schneider, Magnus
    Rathi, Bhasker
    Straub, Daniel
    Lightfoot, Alex
    Kipfer, Rolf
    Berg, Michael
    Jetten, Mike
    Kleindienst, Sara
    Kappler, Andreas
    COMMUNICATIONS EARTH & ENVIRONMENT, 2020, 1 (01):
  • [9] Niche Differentiation of Sulfate- and Iron-Dependent Anaerobic Methane Oxidation and Methylotrophic Methanogenesis in Deep Sea Methane Seeps
    Li, Haizhou
    Yang, Qunhui
    Zhou, Huaiyang
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [10] Sulfate- and iron-dependent anaerobic methane oxidation occurring side-by-side in freshwater lake sediment
    Mostovaya, Alina
    Wind-Hansen, Michael
    Rousteau, Paul
    Bristow, Laura A.
    Thamdrup, Bo
    LIMNOLOGY AND OCEANOGRAPHY, 2022, 67 (01) : 231 - 246