Deep Learning Based Cystoscopy Image Enhancement

被引:1
|
作者
Ye, Zixing [1 ]
Luo, Shun [2 ]
Wang, Lianpo [2 ,3 ]
机构
[1] Peking Union Med Coll Hosp, Dept Urol, Beijing, Peoples R China
[2] Northwestern Polytech Univ, Sch Software, 1 Dongxiang Rd, Xian 710072, Peoples R China
[3] Polytech Univ Shenzhen, Res & Dev Inst Northwestern, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
cystoscopy image enhancement; blood haze removal; deep learning; NARROW-BAND; CONTRAST;
D O I
10.1089/end.2023.0751
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Endoscopy image enhancement technology provides doctors with clearer and more detailed images for observation and diagnosis, allowing doctors to assess lesions more accurately. Unlike most other endoscopy images, cystoscopy images face more complex and diverse image degradation because of their underwater imaging characteristics. Among the various causes of image degradation, the blood haze resulting from bladder mucosal bleeding make the background blurry and unclear, severely affecting diagnostic efficiency, even leading to misjudgment.Materials and Methods: We propose a deep learning-based approach to mitigate the impact of blood haze on cystoscopy images. The approach consists of two parts as follows: a blood haze removal network and a contrast enhancement algorithm. First, we adopt Feature Fusion Attention Network (FFA-Net) and transfer learning in the field of deep learning to remove blood haze from cystoscopy images and introduce perceptual loss to constrain the network for better visual results. Second, we enhance the image contrast by remapping the gray scale of the blood haze-free image and performing weighted fusion of the processed image and the original image.Results: In the blood haze removal stage, the algorithm proposed in this article achieves an average peak signal-to-noise ratio of 29.44 decibels, which is 15% higher than state-of-the-art traditional methods. The average structural similarity and perceptual image patch similarity reach 0.9269 and 0.1146, respectively, both superior to state-of-the-art traditional methods. Besides, our method is the best in keeping color balance after removing the blood haze. In the image enhancement stage, our algorithm enhances the contrast of vessels and tissues while preserving the original colors, expanding the dynamic range of the image.Conclusion: The deep learning-based cystoscopy image enhancement method is significantly better than other traditional methods in both qualitative and quantitative evaluation. The application of artificial intelligence will provide clearer, higher contrast cystoscopy images for medical diagnosis.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Image Enhancement Method Based on Deep Learning
    Zhang, Peipei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [2] Image Enhancement Method Based on Deep Learning
    Zhang, Peipei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [3] Research on spatial image enhancement based on deep learning
    Ni Yue
    Zhang Yao-lei
    Jiang Xiao-yue
    Chao Lu-jing
    Ben Xun
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [4] Underwater image enhancement based on computational imaging and deep learning
    Yu, Xiao
    Yu, Jia
    Ma, Zhen
    OuYang, Feng
    Zheng, Bing
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VIII, 2021, 11897
  • [5] A deep learning and image enhancement based pipeline for infrared and visible image fusion
    Qi, Jin
    Eyob, Deboch
    Fanose, Mola Natnael
    Wang, Lingfeng
    Cheng, Jian
    NEUROCOMPUTING, 2024, 578
  • [6] Infrared Thermal Image Recognition of Substation Equipment Based on Image Enhancement and Deep Learning
    Tan Y.
    Fan S.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (23): : 7990 - 7997
  • [7] Deep Learning Based Underwater Image Enhancement Using Deep Convolution Neural Network
    Ray, Sharmita
    Baghel, Amit
    Bhatia, Vimal
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [8] Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy
    de Haan, Kevin
    Rivenson, Yair
    Wu, Yichen
    Ozcan, Aydogan
    PROCEEDINGS OF THE IEEE, 2020, 108 (01) : 30 - 50
  • [9] An image enhancement algorithm of video surveillance scene based on deep learning
    Shen, Wei-wei
    Chen, Lin
    Liu, Shuai
    Zhang, Yu-Dong
    IET IMAGE PROCESSING, 2022, 16 (03) : 681 - 690
  • [10] A deep learning-based framework for retinal fundus image enhancement
    Lee, Kang Geon
    Song, Su Jeong
    Lee, Soochahn
    Yu, Hyeong Gon
    Kim, Dong Ik
    Lee, Kyoung Mu
    PLOS ONE, 2023, 18 (03):