Toward the Equiaxed Grain Microstructure in CrMnFeCoNi High-Entropy Alloy Fabricated by Directed-Energy Deposition

被引:2
|
作者
Jin, Minsoo [1 ,2 ]
Chen, Yunhui [3 ,4 ,5 ,6 ]
Dovgyy, Bogdan [1 ,7 ]
Lee, Peter [3 ,4 ]
Pham, Minh-Son [1 ]
机构
[1] Imperial Coll London, Dept Mat, Engn Alloys, Exhibit Rd, London SW7 2AZ, England
[2] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Nanostruct Mat & Adv Characterisat Lab, Daejeon 34141, South Korea
[3] UCL, Mech Engn, Torrington Pl, London WC1E 7JE, England
[4] ESRF European Synchrotron, CS 40220, Grenoble, France
[5] Univ Manchester, Dept Mat, Manchester M13 9PL, England
[6] RMIT Univ, RMIT Ctr Addit Mfg, Melbourne 3000, Australia
[7] Int Addit Mfg Grp, Domaniewska 3, PL-05800 Pruszkow, Poland
基金
英国工程与自然科学研究理事会;
关键词
additive manufacturing; columnar-to-equiaxed transition; directed-energy deposition; high-entropy alloy; synchrotron X-ray imaging; FATIGUE-CRACK GROWTH; POWDER-BED FUSION; MECHANICAL-PROPERTIES; HIGH-STRENGTH; INCONEL; 718; DIRECTIONAL SOLIDIFICATION; DENDRITIC FRAGMENTATION; METALLIC COMPONENTS; TENSILE PROPERTIES; SOLUTE-ENRICHMENT;
D O I
10.1002/adem.202301969
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The columnar grains in additively manufactured alloys increase the tendency to form solidification cracks and cause anisotropy. Studying the effect of process parameters on microstructure development helps to guide the manufacturing of the equiaxed grain microstructure. First, the effect of process conditions on the melt pool dimensions using in situ synchrotron X-ray imaging and thermal profile and solidification condition using finite element simulation and calculation of thermodynamics phase diagrams of CrMnFeCoNi high-entropy alloy fabricated by directed energy deposition is studied. Increasing the laser power reduces the thermal gradient to solidification rate ratio, pushing the solidification closer to the columnar-equiaxed transition. Nevertheless, the simulations still indicate the columnar microstructure for all scan conditions in contrast to the experimental observation that shows single-wall samples built at 200 W consisted of dominantly equiaxed grains, whereas columnar grains are dominant in samples built at 100 W. It is believed that in addition to the effect of thermal gradient and solidification rate, the chemical segregation (Mn and Ni) during solidification may promote dendrite detachment, hence assisting the transition to equiaxed grains. The multitrack deposition results in more solid beneath a new melt pool, increasing the thermal gradient that promotes more columnar grains in comparison to single tracks. This study investigates the influence of process parameters on the columnar-to-equiaxed transition in CrMnFeCoNi high-entropy alloy fabricated by directed energy deposition. In situ and ex situ analyses indicate that increasing laser power enlarges melt-pool volume, thereby reducing the thermal gradient to solidification rate ratio. This promotes the formation of equiaxed grains and enhances tensile properties.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270
  • [2] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Bernd Gludovatz
    Easo P. George
    Robert O. Ritchie
    JOM, 2015, 67 : 2262 - 2270
  • [3] Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy
    Laplanche, G.
    Kostka, A.
    Horst, O. M.
    Eggeler, G.
    George, E. P.
    ACTA MATERIALIA, 2016, 118 : 152 - 163
  • [4] The columnar to equiaxed transition of CoCrNi medium-entropy alloy fabricated by laser directed energy deposition
    Zhao, Wenjie
    Sun, Yonggang
    Che, Pengcheng
    Ning, Zhiliang
    Fan, Hongbo
    Yang, Haiyan
    Sun, Jianfei
    Liaw, Peter K.
    Ngan, Alfonso H. W.
    Huang, Yongjiang
    MATERIALS & DESIGN, 2024, 237
  • [5] Effect of TiC Content on Microstructure and Properties of CrMnFeCoNi High-Entropy Alloy
    Li, Mengzhao
    Huang, Long
    Zhou, Yicheng
    Zhang, Guodong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (10) : 4987 - 4999
  • [6] Microstructure and properties of FeCoNiCrAl high-entropy alloy coating by directed laser deposition
    Di, TengDa
    Liang, XinYi
    Niu, FangYong
    Song, ChenChen
    Shu, DanLin
    Hao, YuanChen
    Ma, GuangYi
    Wu, DongJiang
    10TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: ADVANCED AND EXTREME MICRO-NANO MANUFACTURING TECHNOLOGIES, 2021, 12073
  • [7] Tensile property and hot corrosion behavior of CrMnFeCoNi high-entropy alloy fabricated via laser melting deposition
    Tong, Zhaopeng
    Wan, Wenbin
    Zhou, Wangfan
    Ye, YunXia
    Jiao, Jiafei
    Ren, Xudong
    INTERMETALLICS, 2022, 151
  • [8] A novel strategy to regulate the precipitation-strengthened high-entropy alloy fabricated by laser directed energy deposition
    Zhang, Bin
    Mu, Weidong
    Cai, Yan
    MATERIALS CHARACTERIZATION, 2024, 215
  • [9] Microstructural and defect characterization in single beads of the CrMnFeCoNi high-entropy alloy processed by the multi-beam laser directed energy deposition
    Ilman, Kholqillah Ardhian
    Yamashita, Yorihiro
    Kunimine, Takahiro
    JOURNAL OF ADVANCED JOINING PROCESSES, 2025, 11
  • [10] High-performance aluminum alloy with fully equiaxed grain microstructure fabricated by laser metal deposition
    Xuanyi Yang
    Rui Cai
    Caiying Chen
    Sherif Araby
    Yongheng Li
    Wei Wang
    Qingshi Meng
    Journal of Materials Research, 2022, 37 : 3658 - 3667