Fine -Grained Distillation for Long Document Retrieval

被引:0
|
作者
Zhou, Yucheng [1 ,4 ]
Shen, Tao [2 ]
Geng, Xiubo [3 ]
Tao, Chongyang [3 ]
Shen, Jianbing [1 ]
Long, Guodong [2 ]
Xu, Can [3 ]
Jiang, Daxin [3 ]
机构
[1] Univ Macau, CIS, SKL IOTSC, Taipa, Macau, Peoples R China
[2] Univ Technol Sydney, AAII, FEIT, Sydney, NSW, Australia
[3] Microsoft Corp, Redmond, WA 98052 USA
[4] Microsoft, Redmond, WA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long document retrieval aims to fetch query -relevant documents from a large-scale collection, where knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross -encoder. However, in contrast to passages or sentences, retrieval on long documents suffers from the scope hypothesis that a long document may cover multiple topics. This maximizes their structure heterogeneity and poses a granular-mismatch issue, leading to an inferior distillation efficacy. In this work, we propose a new learning framework, fine-grained distillation (FGD), for long -document retrievers. While preserving the conventional dense retrieval paradigm, it first produces global -consistent representations crossing different fine granularity and then applies multi-granular aligned distillation merely during training. In experiments, we evaluate our framework on two long document retrieval benchmarks, which show state-of-the-art performance.
引用
收藏
页码:19732 / 19740
页数:9
相关论文
共 50 条
  • [1] Multi-level knowledge distillation for fine-grained fashion image retrieval
    Xiao, Ling
    Yamasaki, Toshihiko
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [2] Fine-Grained Retrieval with Autoencoders
    Portenier, Tiziano
    Hu, Qiyang
    Favaro, Paolo
    Zwicker, Matthias
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 85 - 95
  • [3] Lifelong Fine-Grained Image Retrieval
    Chen, Wei
    Xu, Haoyang
    Pu, Nan
    Liu, Yu
    Lao, Mingrui
    Wang, Weiping
    Liu, Li
    Lew, Michael S.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7533 - 7544
  • [4] Fine-Grained Retrieval Prompt Tuning
    Wang, Shijie
    Chang, Jianlong
    Wang, Zhihui
    Li, Haojie
    Ouyang, Wanli
    Tian, Qi
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2644 - 2652
  • [5] Fine-Grained Video Retrieval With Scene Sketches
    Zuo, Ran
    Deng, Xiaoming
    Chen, Keqi
    Zhang, Zhengming
    Lai, Yu-Kun
    Liu, Fang
    Ma, Cuixia
    Wang, Hao
    Liu, Yong-Jin
    Wang, Hongan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3136 - 3149
  • [6] Multidimensional interactive fine-grained image retrieval
    Hsiang, J
    Liu, WJ
    Chen, BC
    Tu, HC
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 297 - 300
  • [7] Exploiting fine grained parallelism for acceleration of web retrieval
    Yuan, JL
    Chi, CH
    Sun, QB
    WEB AND COMMUNICATION TECHNOLOGIES AND INTERNET -RELATED SOCIAL ISSUES - HSI 2005, 2005, 3597 : 125 - 134
  • [8] Deep Saliency Hashing for Fine-Grained Retrieval
    Jin, Sheng
    Yao, Hongxun
    Sun, Xiaoshuai
    Zhou, Shangchen
    Zhang, Lei
    Hua, Xiansheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5336 - 5351
  • [9] A novel dense retrieval framework for long document retrieval
    Wang, Jiajia
    Zhao, Weizhong
    Tu, Xinhui
    He, Tingting
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (04)
  • [10] Fine-Grained Retrieval Method of Textile Image
    Tan, Shutao
    Dong, Liang
    Zhang, Min
    Zhang, Ye
    IEEE ACCESS, 2023, 11 : 70525 - 70533