Digitally Stained Confocal Microscopy through Deep Learning

被引:0
|
作者
Combalia, Marc [1 ]
Perez-Anker, Javiera [1 ]
Garcia-Herrera, Adriana [2 ]
Alos, Llucia [2 ]
Vilaplana, Veronica [3 ]
Marques, Ferran [3 ]
Puig, Susana [1 ]
Malvehy, Josep [1 ]
机构
[1] Univ Barcelona, IDIBAPS, Hosp Clin Barcelona, Dermatol Dept,Melanoma Unit, Barcelona, Spain
[2] Univ Barcelona, IDIBAPS, Hosp Clin Barcelona, Pathol Dept,Melanoma Unit, Barcelona, Spain
[3] Univ Politecn Cataluna, Signal Theory & Commun Dept, BarcelonaTech, Barcelona, Spain
关键词
Deep learning; Neural Networks; Digital Staining; Confocal Microscopy; Speckle Noise; CycleGAN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Specialists have used confocal microscopy in the ex-vivo modality to identify Basal Cell Carcinoma tumors with an overall sensitivity of 96.6% and specificity of 89.2% (Chung et al., 2004). However, this technology hasn't established yet in the standard clinical practice because most pathologists lack the knowledge to interpret its output. In this paper we propose a combination of deep learning and computer vision techniques to digitally stain confocal microscopy images into H&E-like slides, enabling pathologists to interpret these images without specific training. We use a fully convolutional neural network with a multiplicative residual connection to denoise the confocal microscopy images, and then stain them using a Cycle Consistency Generative Adversarial Network.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 50 条
  • [1] Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology
    Gareau, Daniel S.
    JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (03)
  • [2] Signal Detection in Three-Dimensional Confocal Microscopy Images through Deep Learning
    Paulik, Robert
    Kozlovszky, Miklos
    Molnar, Bela
    18TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS, SACI 2024, 2024, : 553 - 558
  • [3] Fast confocal microscopy imaging based on deep learning
    Li, Xiu
    Dong, Jiuyang
    Li, Bowen
    Zhang, Yi
    Zhang, Yongbing
    Veeraraghavan, Ashok
    Ji, Xiangyang
    2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2020,
  • [4] Enhancing image resolution of confocal fluorescence microscopy with deep learning
    Huang, Boyi
    Li, Jia
    Yao, Bowen
    Yang, Zhigang
    Lam, Edmund Y.
    Zhang, Jia
    Yan, Wei
    Qu, Junle
    PHOTONIX, 2023, 4 (01)
  • [5] Hybrid Deep Learning for Reflectance Confocal Microscopy Skin Images
    Kaur, Parneet
    Dana, Kristin J.
    Cula, Gabriela Oana
    Mack, M. Catherine
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1466 - 1471
  • [6] DETECTION OF DOUBLY STAINED FLUORESCENT SPECIMENS USING CONFOCAL MICROSCOPY
    MOSSBERG, K
    ERICSSON, M
    JOURNAL OF MICROSCOPY, 1990, 158 : 215 - 224
  • [7] Use of Digitally Stained Multimodal Confocal Mosaic Images to Screen for Nonmelanoma Skin Cancer
    Mu, Euphemia W.
    Lewin, Jesse M.
    Stevenson, Mary L.
    Meehan, Shane A.
    Carucci, John A.
    Gareau, Daniel S.
    JAMA DERMATOLOGY, 2016, 152 (12) : 1335 - 1341
  • [8] Deep Learning for Basal Cell Carcinoma Detection for Reflectance Confocal Microscopy
    Campanella, Gabriele
    Navarrete-Dechent, Cristian
    Liopyris, Konstantinos
    Monnier, Jilliana
    Aleissa, Saud
    Minhas, Brahmteg
    Scope, Alon
    Longo, Caterina
    Guitera, Pascale
    Pellacani, Giovanni
    Kose, Kivanc
    Halpern, Allan C.
    Fuchs, Thomas J.
    Jain, Manu
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (01) : 97 - 103
  • [9] Deep learning for inflammatory diseases classification based on reflectance confocal microscopy
    Wan, Li
    Chen, Jinbo
    Wu, Hao
    Su, Fei
    Jiang, Qian
    Ma, Ling
    Chen, Hongying
    Peng, Zhenghong
    Sun, Zhihao
    Liu, Lingbo
    Chen, Liuqing
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2023, 88 (05) : E283 - E284
  • [10] Correction: Enhancing image resolution of confocal fluorescence microscopy with deep learning
    Boyi Huang
    Jia Li
    Bowen Yao
    Zhigang Yang
    Edmund Y. Lam
    Jia Zhang
    Wei Yan
    Junle Qu
    PhotoniX, 4