High-efficient stabilization and solidification of municipal solid waste incineration fly ash by synergy of alkali treatment and supersulfated cement

被引:4
|
作者
Cao, Wenxiang [1 ]
Lv, Xuesen [1 ]
Ban, Jiaxing [1 ]
Lu, Jian-Xin [1 ]
Liu, Ze [2 ]
Chen, Zhen [3 ]
Poon, Chi Sun [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[2] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
关键词
Incineration fly ash; Supersulfated cement; Alkali treatment; Heavy metals; Stabilization and solidification; MSWI BOTTOM ASH; HEAVY-METAL IMMOBILIZATION; MECHANISMS; POLLUTION; RECOVERY;
D O I
10.1016/j.envpol.2024.124261
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Municipal solid waste incineration fly ash (IFA) designated as hazardous waste poses risks to environment and human health. This study introduces a novel approach for the stabilization and solidification (S/S) of IFA: a combined approach involving alkali treatment and immobilization in low-carbon supersulfated cement (SSC). The impact of varying temperatures of alkali solution on the chemical and mineralogical compositions, as well as the pozzolanic reactivity of IFA, and the removal efficiency of heavy metals and metallic aluminum (Al) were examined. The physical characteristics, hydration kinetics and effectiveness of SSC in immobilizing IFA were also analyzed. Results showed that alkali treatment at 25 degrees C effectively eliminated heavy metals like manganese (Mn), barium (Ba), nickel (Ni), and chromium (Cr) to safe levels and totally removed the metallic Al, while enhancing the pozzolanic reactivity of IFA. By incorporating the alkali-treated IFA and filtrate, the density, compressive strength and hydration reaction of SSC were improved, resulting in higher hydration degree, finer pore structure, and denser microstructure compared to untreated IFA. The rich presence of calcium-aluminosilicate-hydrate (C(A)-S-H) and ettringite (AFt) in SSC facilitated the efficient stabilization and solidification of heavy metals, leading to a significant decrease in their leaching potential. The use of SSC for treating Ca(OH)2- and 25 degrees Ctreated IFA could achieve high strength and high-efficient immobilization.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Review on Cement Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash
    Fan, Chengcheng
    Wang, Baomin
    Zhang, Tingting
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [2] The cement solidification of municipal solid waste incineration fly ash
    Hou Haobo
    He Xinghua
    Zhu Shujing
    Zhang Dajie
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2006, 21 (04): : 137 - 140
  • [3] The cement solidification of municipal solid waste incineration fly ash
    Hou H.
    He X.
    Zhu S.
    Zhang D.
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2006, 21 (4): : 137 - 140
  • [4] Characteristics of municipal solid waste incineration fly ash with cement solidification treatment
    Bie, Rushan
    Chen, Pei
    Song, Xingfei
    Ji, Xiaoyu
    JOURNAL OF THE ENERGY INSTITUTE, 2016, 89 (04) : 704 - 712
  • [5] Solidification/Stabilization of Fly Ash from a Municipal Solid Waste Incineration Facility Using Portland Cement
    Tang, Qiang
    Liu, Yang
    Gu, Fan
    Zhou, Ting
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2016, 2016
  • [6] Designing novel magnesium oxysulfate cement for stabilization/solidification of municipal solid waste incineration fly ash
    Wang, Lei
    Zhang, Yuying
    Chen, Liang
    Guo, Binglin
    Tan, Yongshan
    Sasaki, Keiko
    Tsang, Daniel C. W.
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 423
  • [7] Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash
    Chen, Liang
    Wang, Lei
    Zhang, Yuying
    Ruan, Shaoqin
    Mechtcherine, Viktor
    Tsang, Daniel C. W.
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [8] Solidification and Stabilization of Heavy Metals in Municipal Solid Waste Incineration Fly Ash Using Nanoalumina by Alkali-Activated Treatment
    Wang, Baomin
    Li, Tianru
    Zhang, Xiong
    Han, Xiao
    Xing, Yunqing
    Fan, Chengcheng
    Liu, Ze
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (02)
  • [9] Solidification of municipal solid waste incineration fly ash with alkali-activated technology
    Fan, Chengcheng
    Wu, Zhenlin
    Wang, Baomin
    Zheng, Weihao
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 348
  • [10] Analysis of the cement solidification effect and mechanisms of municipal solid waste incineration fly ash
    He Xinghua
    Hou Haobo
    Zhu Shujing
    Zhang Dajie
    Tian Xiaofeng
    Proceedings of the China Association for Science and Technology, Vol 2, No 1, 2006, : 468 - 473